Time series of IOPs in SE Asia

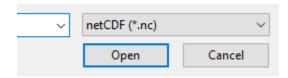
Contents

Tin	me series of IOPs in SE Asia	1
	Introduction	
2	Data source	1
3	Extracting pixel statistics corresponding to a list of stations with	
wai	m_match_nearest	4
4	Creating areal statistics with wam_statist_mask	5

1 Introduction

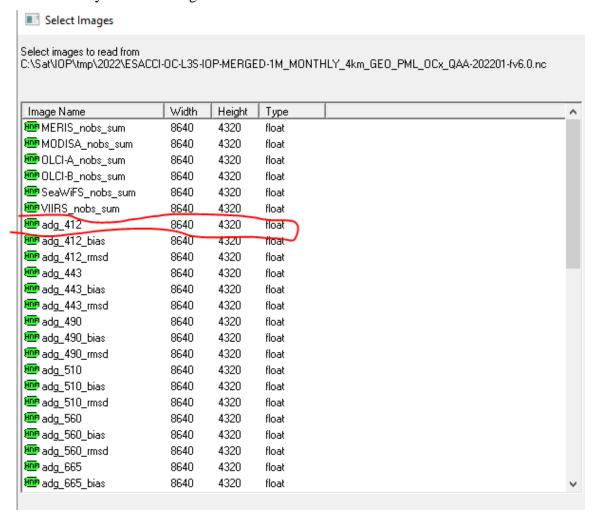
This tutorial applies the methods described in https://wimsoft.com/Course/3/Time_series_SE_Asia.pdf to ESA-CCI Inherent Optical Properties (IOP) data.

The software used in this tutorial is WIM/WAM that can be downloaded from https://wimsoft.com/Course/wam64.msi (install using option *Typical*; run WIM, enter the license number is 9999591398). The software runs under Windows 10.


2 Data source

We are using ESA-CCI (Climate Change Initiative) monthly IOP data (version 6.0). Use an FTP client (e.g. Filezilla) to connect to ftp://oceancolour.org and navigate to

/occci-v6.0/geographic/netcdf/monthly/iop


Make a new folder like $C:\Sat\IOP\tmp$ and download the data files from selected years to this folder. Here we download just one year (2022) and get 12 monthly .nc files in folder $C:\Sat\IOP\tmp\2022$.

The files are about 2.5 GB in size and contain many datasets. You can look at the contents by opening a sample file with WIM. Remember to open the .nc file **as netCDF**. Set the **netCDF** option at bottom right:

You should make a connection between .nc files and WIM, so that you can just click (or double-click) on a .nc file in Windows and the file would open in WIM.

Confirm that you have a long list of individual datasets in the IOP file:

Here we are going to use just one dataset, adg412. To conserve disk space and speed up processing, we extract just adg412 and can later discard the original 2.5 GB .nc files. You can extract adg_412 using the provided batch file extract.bat.

cd Sat\IOP

extract.bat

The main command in the batch file is:

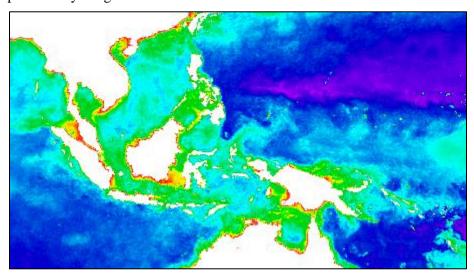
wam extract sds %FROMDIR%\%YEAR%\ESACCI*.nc adg 412

Here %FROMDIR%\%YEAR% is the directory where the .nc files are. %YEAR% is, of course, the year, as 2022. The batch file makes a folder Monthly\adg_412 and moves the monthly global adg_412 datasets to this folder. These files are in HDF4 format (.hdf) and can be opened in WIM as **HDF4** files. Again, you can open these files by just clicking (double-clicking) on the file in Windows after you have made a connection between .hdf files and WIM. The size of the extracted global adg_412 files is about 50 MB which is still quite large. If you don't need global data and are interested only in a small sub-area, you can extract a smaller area by remapping to a regional map. Here we remap those global datasets to our SE Asia map sea10.hdf that was used

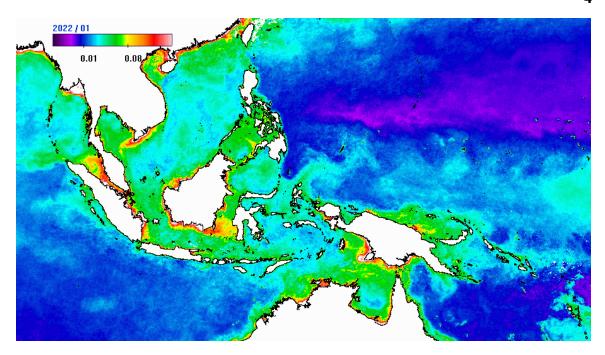
earlier in https://wimsoft.com/Course/3/Time_series_SE_Asia.pdf. You can do the remapping using a batch file *remap.bat*.

cd Sat\IOP

remap.bat


The main command in the batch file is:

 $wam_remap2\ Monthly\adg_412\ESACCI-*.hdf\ \%MAP\%\ convert=logMinus4\ colorFrom=90\ colorTo=255$


Make sure that the target map file (%MAP%) is defined and exists. Check and, if needed, edit the batch file *remap.bat*. In my case, I have defined the target map as:

set MAP=maps\sea10.hdf

The batch file makes a folder $Monthly \setminus adg_412_sea10$ and moves the regional mapped adg_412 datasets to this folder. It also converts the float32 pixels into log-scaled byte pixels and sets the color scaling in pixel values 90 to 255 that correspond to real values of 0.0023 to 0.66 m⁻¹. A sample monthly image file looks like this:

You can make an overlay image with dark coastlines and a color bar and overlay that on top of each image. I have made and overlay *C:\Sat\IOP\maps\\ sea10_adg90-255.hdf* and a batch file for making the overlaid images *overlay.bat*. After you run overlay.bat you will get PNG images like for each of the matching HDF file. You can also make a GIF animation using the PNG images to show the annual cycle from January to December of 2022 (below). I used the Babarosa Gif Animator to make the animation but there are many other tools like that.

3 Extracting pixel statistics corresponding to a list of stations with wam_match_nearest

Assuming that we have a list of stations with measurements and we want to extract pixel values corresponding to our stations. The station list has to be a CSV file with columns: *Longitude*, *Latitude*, *Date*, *Time*, etc. Note the order! In this case we have Level-3 monthly composites and station time is not relevant in finding a match-up closest in time but for consistency with Level-2 match-ups we still need a time entry (it can be anything, e.g., 12:00). A sample station list is like that:

0	ongitude	Latitude	DateUTC	TimeUTC	Location	Salinity	temperature
1	03.8481	1.216	1/25/2022	11:00	StJohns	31.08	28.05
1	03.7398	1.159	1/25/2022	13:00	Raffles	31.11	28.15

You can create the list in Excel and save as a CSV file *station_list_mk.csv*.

Note that Excel has automatically changed the *Date* into the US format MM/DD/YYYY. I think that my software works also if the format is YYYY/MM/DD (need to test!). Note that the current station list has only *Salinity* and *temperature*, i.e. no measured CDOM. That means that we cannot actually "validate" the satellite data before we add CDOM data but we can extract the match-ups anyway and add CDOM later. We can evaluate the relationship between *Salinity* and *adg_412* (absorption of detritus and CDOM at 412 nm). We will use *wam_match_nearest* to find the match-ups nearest in time.

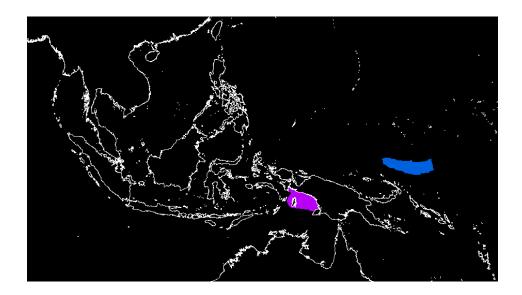
cd Sat\IOP

wam_match_nearest station_list_mk.csv Monthly\adg_412_sea10*.hdf

The command found 24 match-ups and saved them in *station_list_mk_adg.csv*. These match-ups were made from remapped files that were also scaled with log scaling to make better visualizations. For more accurate match-ups we should find them from the original global files. In order keep the file *station_list_mk_adg.csv* that we just made, we rename it to *station_list_mk_adg_from_sea10.csv*. We run the command with the global files:

wam_match_nearest station_list_mk.csv Monthly\adg_412*.hdf

This is taking more time as the image files are bigger but it found again 24 match-ups and saved them in $station_list_mk_adg.csv$. Note that using monthly satellite datasets can only give us some useful information if the variable does not change much at shorter time scales. For real match-up analysis we should be using daily or at least 5-day composited images and then set the maximum time difference, e.g., MaxDiffDays=5. There are many other options in wam_match_nearest that can be seen when typing just the name of the command. We can even use it with the original 2.5 GB netCDF files by specifying the sequence number of the dataset (0-relative), e.g., sdsNumber=6 for adg_412 . For example:


wam_match_nearest station_list_mk.csv ..\..\2022*.nc sdsNumber=6

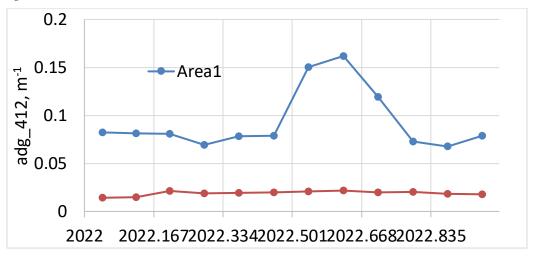
Note that I have moved the huge .nc files to a different location.

While finding match-ups from Level-3 files we have to keep in mind that there can be significant errors due to temporal and spatial aliasing. We normally use the *Mean* of the 3 x 3 pixel neighborhood as the representative satellite value. In case of the global ESA-CCI data this is 3 pixels mean approximately $3 * 4.65 \sim 14$ km that is a huge distance in the coastal zone. You should also note the *Min* and *Max* range (in the match-up file) as they could show outliers. Obvious outliers can be eliminated by options like *ValidMin=X* and *ValidMax=Y*.

4 Creating areal statistics with wam_statist_mask

In the first tutorial https://wimsoft.com/Course/3/Time_series_SE_Asia.pdf we created an areal masks (filled with pixel values 1 and 2) for the *sea10.hdf* map. Here we use the same masks to create annual time series of *adg_412*.

We will use the 12 monthly mapped datasets as our masks file is for the sea10.hdf map. We could also create a mask file for the global 8640 x 4320 dataset:


cd Sat\IOP

set MASK=Maps\sea10 mask1-2.hdf

wam_statist_mask Monthly\adg_412_sea10*.hdf mask=%MASK%

Output was saved in _statist_grid_sea10_mask1-2.csv. Note that here areas 1 and 2 are alternating. In order to make plots in Excel we need to sort the lines by area numbers (1 and 2).

You can now make plots using _statist_grid_sea10_mask1-2_sorted.csv. Below are annual plots of *adg_412* for areas 1 and 2.

You can access this tutorial at https://www.wimsoft.com/Course/3/Time_series_IOP_SE_Asia.pdf

The data files used in this tutorial (excluding the original .nc files) can be found on my Google Drive at

https://drive.google.com/drive/folders/1kq1jKFGgW0mI2hKQaHLiTA8a45XXxaVR?usp=sharing

You can copy this *IOP* folder to your *Sat* folder.

WORK IN PROGRESS! TO BE UPDATED!

Questions? Ask Mati at mkahru@ucsd.edu!