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Ocean color chlorophyll algorithms for SeaWiFS

John E. O’Reilly,iStéphane Maritorena,? B. Greg Mitchell,? David A. Siegel,*
Kendall L. Carder,5 Sara A. Garver,® Mati Kahru,? and Charles McClain?

Abstract. A large data set containing coincident in situ chlorophyll and remote sensing
reflectance measurements was used to evaluate the accuracy, precision, and suitability of a
wide variety of ocean color chlorophyll algorithms for use by SeaWiFS (Sea-viewing Wide
Field-of-view Sensor). The radiance-chlorophyll data were assembled from various sources
during the SeaWiFS Bio-optical Algorithm Mini-Workshop (SeaBAM) and is composed of
919 stations encompassing chlorophyll concentrations between 0.019 and 32.79 ug L.
Most of the observations are from Case I nonpolar waters, and ~20 observations are from

more turbid coastal waters: A variety of statistical and graphical criteria were used to -
evaluate the performances of 2 semianalytic and 15 empirical chlorophyll/pigment
algorithms subjected to the SeaBAM data. The empirical algorithms generally performed
better than the semianalytic. Cubic polynomial formulations were generally superior to
other kinds of equations. Empirical algorithms with increasing complexity (number of
coefficients and wavebands), were calibrated to the SeaBAM data, and evaluated to
illustrate the relative merits of different formulations. The ocean chlorophyll 2 algorithm
(0OC2), a modified cubic polynomial (MCP) function which uses Rrs490/Rrs555, well
simulates the sigmoidal pattern evident between log-transformed radiance ratios and
chlorophyll, and has been chosen as the at-launch SeaWiFS operational chlorophyll a
algorithm. Improved performance was obtained using the ocean chlorophyll 4 algorithm
(OC4), a four-band (443, 490, 510, 555 nm), maximum band ratio formulation. This
maximum band ratio (MBR) is a new approach in empirical ocean color algorithms and
has the potential advantage of maintaining the highest possible satellite sensor
signal : noise ratio over a 3-orders-of-magnitude range in chlorophyll concentration.

1. Introduction

The influence of phytoplankton on the color of seawater has
been studied for several decades. It is well understood that
chlorophyll a, the primary photosynthetic pigment in phyto-
plankton, absorbs relatively more blue and red light than
green, and the spectrum of backscattered sunlight or color of
ocean water progressively shifts from deep blue to green as the
concentration of phytoplankton increases [e.g., Yentsch, 1960].
Following successful high-altitude aircraft studies relating
ocean color to chlorophyll concentration [Clark et al., 1970;
Hovis, 1981], satellite ocean color research began in the late
1970s with the coastal zone color scanner (CZCS) aboard the
Nimbus 7 satellite which acquired data from October 1978 to
June 1986 [Evans and Gordon, 1994; Acker, 1994]. Because
phytoplankton are the major contributor to ocean color in
offshore water, the passive remote measurements of the CZCS
over the oceans were successfully used to quantify in situ phy-
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toplankton chlorophyll concentrations. The CZCS ocean color
data profoundly enriched our understanding of the global dis-
tribution of phytoplankton by providing a synoptic, spatially
and temporally cohesive picture of phytoplankton biomass
variability only partially resolved by previous shipboard sam-
pling [Yoder et al., 1988; Feldman et al., 1989; Aiken et al., 1992;
McClain, 1993; Yoder et al., 1993; Mitchell, 1994]. Moreover,
combining CZCS data with shipboard data and other satellite
measurements, such as sea surface temperature from the ad-
vanced very high resolution radiometer (AVHRR), provided
insights into linkages between physical and biological oceano-
graphic properties [e.g., Sathyendranath et al., 1991; Denman
and Abbott, 1994] and permitted satellite-based estimates of
regional and global phytoplankton primary production [e.g.,
Smith et al., 1982; Campbell and O’Reilly, 1988; Platt et al., 1991;
Longhurst et al., 1995; Antoine et al., 1996; Behrenfeld and
Falkowski, 1997]. Satellite ocean color data provide the only
practical means for monitoring the spatial and seasonal varia-
tions of near-surface phytoplankton, information essential for
the study of oceanic primary production, global carbon and
other biogeochemical cycles, as well as fisheries research.
More than a decade after the end of the pioneer CZCS
mission, a new generation of ocean color sensors is emerging
(Table 1). These new sensors have more wave bands and
higher precision and are designed to avoid some of the limi-
tations of the CZCS [Hooker et al., 1993]. Along with improved
sensors, improvements in bio-optical algorithms are required
for making accurate estimates of chlorophyll a from satellite
radiance data. Such improvements are expected to enhance the
accuracy of global ocean phytoplankton biomass assessments.
Since the 1970s, a variety of bio-optical algorithms have been
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Table 1. Center Wave Bands for Historical and
Contemporary Ocean Color Sensors (400-700 nm Range)

Band,
nm CZCS SeaWiFS OCTS POLDER MODIS MERIS
412 1 1 8 1
443 1 2 2 1 9 2
490 3 3 2 10 3
510 4 4
520 2 4
530 11
550 3 12
555 5
560 . 5
565 5 3 )
620 6
665 6 13 7
670 4 6
678 14
682 8

See notation section for acronym definitions.

developed to estimate chlorophyll a (C) or chlorophyll a +
phaeopigments ([C + P]) concentration from ocean radiance
data. Most of these are empirical equations derived by statis-
tical regression of radiance versus chlorophyll. Advances in
various theoretical studies and new parameterizations of some
optical properties have yielded better knowledge of the marine
light field and have provided new tools for modeling ocean
color [e.g., Gordon et al., 1988; Morel, 1988; Sathyendranath et
al., 1989; Bricaud et al., 1995]. The emergence and develop-
ment of semianalytic (or semiempirical) ocean color algo-
rithms largely result from these improvements in understand-
ing the relationship between remote sensing reflectance (Rrs)
and backscattering to absorption ratio [Morel and Prieur, 1977;
Carder et al., 1986]. Semianalytic algorithms use analytical,
optical, Rrs models that can be inverted to derive chlorophyll,
absorption coefficients of other optically active components in
the water, such as gelbstoff, or the backscattering coefficient
b,. Empiricism is involved in the parameterization of several
terms used in these models (e.g., backscattering, chl a-specific
absorption coefficient, spectral shapes of detrital absorption).
This admixture of theory and empiricism is the reason the term
semianalytic has been applied [e.g., Gordon and Morel, 1983] to
describe such algorithms.

Despite these advances, the development and evaluation of
the accuracy and precision of ocean color chlorophyll algo-
rithms has been impeded by the limited number and geo-
graphic distribution of simultaneous in situ radiance and chlo-
rophyll data and the even smaller number of in situ
measurements coincident with satellite data [Gordon et al.,
1983; Balch et al., 1992]. For example, the empirical algorithm,
widely applied in the processing of the global CZCS data set
[Gordon et al., 1983; Feldman et al., 1989; Evans and Gordon,
1994], was derived from the Nimbus Experiment Team radi-
ance-chlorophyll data set [Acker, 1994] which contains less
than 60 stations.

In January 1997, NASA convened a small working group
(SeaWiF$S Bio-optical Algorithm Mini-Workshop; hereinafter
referred to as SeaBAM) whose primary goal was the identifi-
cation of chlorophyll a (C) and chlorophyll a + phacopig-
ments ([C + P]) algorithms suitable for operational use by
SeaWiFS [Firestone and Hooker, 1998]. Such algorithms are
expected to encompass accurately a large diversity of bio-
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optical conditions since they will be used routinely to process
data at the global scale. To achieve this goal, a large, globally
representative evaluation data set, the SeaBAM data, was
compiled from various sources, and criteria for objective eval-
uation of algorithms were developed. The SeaBAM activity
also provided an opportunity to evaluate and compare chloro-
phyll a and [C + P] algorithms from past (CZCS), current
(OCTS, POLDER), and near-future (MODIS) sensors. Such
an evaluation would also provide useful information for the
recently initiated ocean color satellite intercomparison studies
such as SIMBIOS (Sensor Intercomparison and Merger for
Biological and Interdisciplinary Oceanic Studies) [Esaias et al.,
1995].

In this paper we report on the results of the evaluation of 17
algorithms tested using the SeaBAM data. The composition
and characteristics of the SeaBAM data and criteria used in
the evaluation of these algorithms are described. The relative
merits of various algorithm formulations, tuned to SeaBAM
data, are also presented, and their suitability for operational
use by SeaWiFS and compatibility with past ocean color data
are discussed.

2. Algorithms

Two semianalytic models and 15 empirical equations were
evaluated (Table 2). Some of the algorithms require Rrs, and
others require normalized water-leaving radiance Lwn. The
equations presented in this paper reflect the versions of the
algorithms in April 1997 at the conclusion of the SeaBAM
activity [Firestone and Hooker, 1998], except for the global
versions of the Carder and Garver-Siegel models which were
parameterized and evaluated following this workshop. This
diverse collection of algorithms is briefly described below.

2.1.

The Carder model (K. L. Carder et al., Semianalytic MODIS
algorithms for chlorophyll and absorption with bio-optical do-
mains based on nitrate depletion temperatures, submitted to
Journal of Geophysical Research, 1998), is a semianalytic algo-
rithm based on the b,/(a + b,) to Rrs relationship [Gordon et
al., 1988]. It uses the Rrs at four SeaWiFS wavelengths to
derive the absorption coefficient of phytoplankton at 675 nm,
a,,(675), and the absorption coefficient of colored dissolved
organic matter (CDOM) at 400 nm, a,(400). Chlorophyll a
concentration is then calculated from an empirical relationship
between a,,(675) and chlorophyll a. A default, two-
wavelength empirical algorithm (Rrs490/Rrs555) is used when
a,,(675) is outside a predetermined search range. Two ver-
sions of the Carder model were evaluated: an initial version
parameterized for subtropical, unpackaged pigment data and a
second version parameterized for more packaged pigments
and global application [Carder et al., 1998].

The Garver/Siegel model [Garver and Siegel, 1997] is a semi-
analytic algorithm based on the quadratic form of the b,/(a +
b,) to Rrs relationship. The model uses predefined shapes for
specific absorption and backscattering coefficients to derive,
through a nonlinear statistical method, the chlorophyll a con-
centration, the absorption coefficient due to phytoplankton at
441 nm, a,,(441), the absorption coefficient due to other
particulate and dissolved matter at 441 nm, a,,,(441), and the
backscattering coefficient of particles at the same wavelength,
b,,(441). The model was initially tested against data from the

Semianalytic Models
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Table 2. Empirical Algorithms
Algorithm Type Result Equation(s) Band Ratio (R), Coefficients (a) Reference
Global power Cy3 = 10(@0+al™RD) R1 = log(Lwn443/Lwn550) 1
processing C,; = 10@2+43"R2) R2 = log(Lwn520/Lwn550)
(GPs) [C+ P]=Cpif Cyand Cps > 1.5 pg  a = [0.053, —1.705, 0.522, —2.440]
L! then [C + P] = Cy5
Clark three- power [C + P] = 100+a1™R) R = log((Lwn443 + Lwn520)/Lwn550) 2
band (C3b) a = [0.745, —2.252]
Aiken-C hyperbolic + C,; = exp(a0 + al*In(R)) R = Lwn490/Lwn555 3
power = (R + a2)/(a3 + a4*R) a = [0.464, —1989, —5.29, 0.719, —4.23]
C=C,;if C<20 ugL!then C= Cy
Aiken-P hyperbolic + C,, = exp(4¢0 + al*In(R)) R = Lwn490/Lwn555 3
power C,y = (R + a2)/(a3 + a4*R) a = [0.696, —2.085, ~5.29, 0.592, —3.48]
[C+ P] = Cpy if [C + P] < 2.0 pg L!
then EC + P] = Cy )
OCTS-C power C = 10@0*al™®) - R = log((Lwn520 + Lwn565)/Lwn490) 4
a = [—0.55006, 3.497]
OCTS-P multiple [C + P] = 10(@0*a1"R1+a2"R2) R1 = log(Lwn443/Lwn520) 5
regression R2 = log(Lwn490/Lwn520)
N N a = [0.19535, —2.079, —3.497]
POLDER cubic C = 100+ al"R+a2"R+a3"R%) R = log(Rrs443/Rrs565) 6
a = [0.438, —2.114, 0.916, —0.851]
CalCOFI two-  power C = 10@0*el™R) R = log(Rrs490/Rrs555) 7
band linear R ' a = [0.444, —2.431]
CalCOFI two-  cubic C = 100+ at"R+a2*R+a3"R%) R = log(Rrs490/Rrs555) 7
band cubic a = [0.450, —2.860, 0.996, —0.3674]
CalCOFI three- multiple C = exp(a0 + al*R1 + a2*R2) R1 = In(Rrs490/Rrs555) 7
band regression ‘ R2 = In(Rrs510/Rrs555)
. a = [1.025, —1.622, —1.238]
CalCOFI four-  multiple C = exp(a0 + al*R1 + a2*R2) R1 = In(Rrs443/Rrs555) 7
band regression R2 = In(Rrs412/Rrs510)
a = [0.753, —2.583, 1.389]
Morel-1 power C = 100+e1"R) R = log(Rrs443/Rrs555) 8
a = [0.2492, —1.768]
Morel-2 power C = exp(a0 + al*R) R = In(Rrs490/Rrs555) 9
o a = [1.077835, —2.542605]
Morel-3 cubic C = 1Q0*at"R+a2*Ro+a3*RY R = log(Rrs443/Rrs555) 9
) s a = [0.20766, —1.82878, 0.75885, —0.73979]
Morel-4 cubic C = 100+ at*R+a2"R7+a3"R%) R = log(Rrs490/Rrs555) 9

a = [1.03117, -2.40134, 0.3219897, —0.291066]

References: 1, Evans and Gordon [1994]; 2, Muller-Karger et al. [1990]; D. Clark; McClain and Yeh [1994]; 3, Aiken et al. [1995]; 4, Science on
the GLI Mission, p. 16; Ocean Optics XIII, Halifax, October 1996; 5, Ocean Optics XIII, Halifax, October 1996; personal communication to C.
McClain, NASA; 6, A. Bricaud, personal communication to S. Maritorena; 7, Mitchell and Kahru [1998]; 8, Ocean Optics XIII, Halifax, October

1996; 9, A. Morel, personal communication to S. Maritorena.

Sargasso Sea [Garver and Siegel, 1997]. Recent developments
included the use of a,,(\) values from Pope and Fry [1997]
instead of Smith and Baker’s [1981], the chlorophyll-specific
phytoplankton absorption spectra of Morel [1988] instead of
that from Bricdud et al. [1995], and a different value for the
exponential decay constant of the detrital and dissolved ab-
sorption. Details of adjustments made to the model for the
SeaBAM intercomparisons are provided by Garver [1997].

2.2. Empirical Models

Most CZCS-pigment estimates have been made using the
global processing switching (GPs) algorithm [Gordon et al.,
1983; Feldman et al., 1989; Evans and Gordon, 1994] which uses
Lwn443/Lwn550 at concentrations below ~1.5 pg L™! and
switches to Lwn520/Lwn550 above 1.5 ug L™', when the
former band ratio gets too low (Table 2). The Clark three-band
(C3b) [Muller-Karger et al., 1990] uses the same bands as the
GPs but avoids band switching by summing the 443 and 520
channels, thereby compensating for the weakness of the 443
nm band at high pigment concentrations. The Aiken hyper-
bolic models estimate C and [C + P] by the combination of a
hyperbolic function up to 2 ug L™" with a power function at
higher concentrations [Aiken et al., 1995]. The OCTS-C model

is a power-law formulation which uses the sum of Lwn520 and
Lwn565 over Lwn490 to estimate C, whereas the OCTS [C +
P] model (OCTS-P) uses two-band ratios, Lwn443/Lwn520 and
Lwn490/Lwn520, in a multiple regression function. The
POLDER algorithm is considered empirical because it is based
on a simple equation relating C to a band ratio, although the
equation was actually derived from the use of a modified ver-
sion of the semianalytic model of Morel [1988], parameteriz'ed
for absorption instead of diffuse attenuation coefficient (A.
Bricaud, personal communication, 1997).

The CalCOFI algorithms are derived from CalCOFI data
[Mitchell and Kahru, 1998]. The CalCOFI two-band relates C
to Rrs490/Rrs555 using a power equation. The CalCOFI two-
band cubic is a third-order polynomial equation using Rrs490/
Rrs555. The CalCOFI three-band, a multiple regression equa-
tion, has similarities with the OCTS-P algorithm and uses the
Rrs490/Rrs555 and Rrs510/Rrs555 band ratios. The functional
form of the CalCOFI four-band equation is similar to Cal-
COFI three-band except that it uses Rrs443/Rrs555 and
Rrs412/R1s510 (Table 2). The Morel-1 equation was presented
at the Ocean Optics XIII meeting [Morel, 1997] and relates C
to Rrs443/Rrs555 using a power equation (Table 2). Morel-2 is

{
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Table 3. Data Sources and Characteristics of SeaBAM Data Set

Wavelength

Data Set Provider/PI Location Date n o foa fohaeo Hcnia  Hphaco
BBOP92-93 D. Siegel Sargasso Sea monthly, 1992-1993 7 72 72 72 410, 441, 488, 520, 565, 665
BBOP94-95 D. Siegel Sargasso Sea monthly, 1994-1995 67 61 61 67 410, 441, 488, 510, 555, 665
WOCE J. Marra 50°S-13°N, 88°-91°W March 1993 70 70 410, 441, 488, 520, 565, 665
10°S-30°N, 18°-37°W  April 1994 ‘
EQPAC C. Davis 0, 140°W March and Sept. 1992 126 126 410, 441, 488, 520, 550, 683
NABE C. Trees 46°-59°N, 17°-20°W  May 1989 72 72 412, 441, 488, 521,550 - -+
NABE C. Davis 46°N, 19°W April 1989 40 40 '410, 441, 488, 520, 550, 683
CARDER K. Carder  North Atlantic Aug. 1991 87 87 412, 443, 490, 510, 555, 670
Pacific July 1992
Gulf Mexico April 1993
Arabian Sea Nov. 1994 and
June 1995
CALCOFI G. Mitchell California Current quarterly, Aug. 1993 303 303 303 412, 443, 490, 510, 555, 665
to July 1996
MOCE1 D. Clark Monterey Bay Sept. 1992 8 8 0 8 412, 443, 490, 510, 555 - -+
MOCE2 D. Clark Gulf California April 1993 5 5 5 5 412, 443, 490, 510, 555 ---
North Sea R. Doerffer 55°-52°N, 0°-8°E July 1994 10 10 412, 443, 490, 510, 555, 670
Chesapeake Bay L. Harding ~37°N, 75°W April and July 1995 9 9 9 412, 443, 490, 510, 555, 671
Canadian Arctic G. Cota ~74.38°N, 95°W August 1996 8 8 7 412, 443, 490, 509, 555, 665
AMT G. Moore  50°N-50°S Sept. 1995 and 42 42 33 412, 443, 490, 510, 555 - -+
April 1996
Total 919 656 448 442 9

fena: fluorometric chlorophyll a; f;.e0: fluorometric phaeophytin a; 7 1, HPLC chlorophyll a; A phaco: HPLC phaeophytin a.

similar to Morel-1 but uses Rrs490/Rrs555. Morel-3 and -4 are
other examples of a cubic polynomial with Rrs443/Rrs555 and
Rrs490/Rrs5595, respectively, and were derived from in situ
measurements and an updated version of the Morel [1988]

semianalytic model (A. Morel, personal communication,
1997).

3. SeaBAM Data Set

To evaluate the performance of chlorophyll and [C.+ P]
algorithms to be used at global scale with SeaWiFS data, an in
situ data set was needed to compare with results predicted by
the various models. Such an evaluation data set should, ideally,
meet the following requirements: (1) contain Rrs or Lwn at or
close to the SeaWiFS visible wavelengths; (2) have the in situ
chlorophyll a concentrations associated with the stations from
which Rrs or Lwn were available or derivable, (3) encompass
the widest possible chlorophyll a concentration range, (4) con-
tain data from the widest possible variety of bio-optical prov-
inces, (5) not contain data used for the development of the
algorithms under evaluation, and (6) be the same for all algo-
rithms under evaluation.

The constraints imposed by requirements 1 and 5 resulted in
an evaluation data set too small to ensure significance or gen-
erality to the evaluation results. Therefore a data set was cre-
ated by merging the data used by the various SeaBAM partic-
ipants [Firestone and Hooker, 1998] as well as other data
available in the NASA SeaBASS bio-optical archive [Hooker et
al., 1994].

3.1. Radiometric Data: Sources, Processing, and Quality
Control

The Rrs in the SeaBAM data originated from various
sources and were derived in different ways depending on which
investigator processed the data (Table 3). The BBOP and
JGOFS data (WOCE, EQPAC, and NABE) were assembled
and processed-at University of California at Santa Barbara and
represent almost one half of the SeaBAM data [Garver, 1997].

The Carder data set is composed of above-water measure-
ments [Carder and Steward, 1985; Lee et al., 1994] collected
during various cruises and locations. The “optimization
method” [Lee et al., 1996] was used on high-chlorophyll data
where water-leaving radiance in the infrared was not zero,
while the “quick and easy” method [Lee et al., 1996] was used
on the remaining Carder data. The CalCOFI data set contains
more than 300 stations, which were processed at Scripps Insti-
tution of Oceanography [Mitchell and Kahru, 1998]. Atlantic
meridional transect (AMT) data were provided directly to us
by Plymouth Marine Laboratory as Rrs. The North Sea,
MOCE, Chesapeake Bay, and Canadian Arctic measurements
were also extracted from the SeaBASS archive, and the latter
three Rrs sets were processed at Goddard Space Flight Center
(GSFC). The North Sea and Chesapeake Bay data were col-
lected in waters with high total suspended matter loads (>1
mg/L) and should be considered Case II. A few other stations
may also be Case II, but such a classification is difficult to
conduct from the sole basis of the radiometric -data.

All data were processed in ways compatible with the Sea-
WiFS protocols [Mueller and Austin, 1995]. However, data
were not corrected for instrument self-shading [Gordon and
Ding, 1992] at high C concentration because some of the in-
formation required to perform these corrections (i.e., absorp-
tion coefficient of the medium, radius of the instrument, Sun
zenith angle, and ratio between diffuse and direct Sun irradi-
ance) was not available. The various processing methodologies
used for in-water data resulted in Rrs expressed as L,/
E, 0+),L,(0-)/E (0-)orL,(0-)/E, 0+), where L, is
the water-leaving radiance, L, is the upwelling radiance, E , is
the downwelling irradiance, and 0+ or 0— indicates measure-
ments just above or just beneath the sea surface, respectively.
For consistency, all data were converted to Rrs = L ,,/E (0 +)
using L, = 0.54L,(0—), and E,(0—) = 0.96E,(0+),
where 0.54 is a mean coefficient summarizing the effect of
internal reflection of the upwelling flux during transmission
through the interface, and 0.96 accounts for the loss of the
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downwelling flux by reflection at the air-sea interface [Austin,
1974; Gordon et al., 1988; Morel and Antoine, 1994]. Both

coefficients assume low solar zenith angle and calm sea sur-

face.

The SeaBAM data set includes ~10% of Rrs data calculated
from above-surface measurements (i.€., Carder and North Sea
data), while all other data were derived from in-water mea-
surements. The protocols for above-surface measurements are
still under development, and the agreement between above-
surface and in-water measurements is extremely dependent
upon experimental and environmental conditions. However,
on the basis of the tests described below, the Rrs from above-
surface measurements did not differ significantly from the
other data.

Radiance band ratios versus C and single bands versus C
were plotted for the various data sets in order to identify
outliers. These plots were very useful in revealing data with
errors and in determining which data could be corrected and
which should be removed from the SeaBAM data. A second
quality control measure used preliminary results from eight
chlorophyll or [C + P] algorithms to identify stations with one
or more “anomalous” radiance values. These models (Cal-
COFI two-band linear; CalCOFI four-band; GPs, Morel-1;
Morel-3; OCTS-C; Carder; Garver/Siegel) were chosen be-
cause their outputs showed a good linearity in log-log space
(minimal curvilinearity) and/or they use three or more wave-
lengths (see Table 2). A station was considered an outlier when
the ratio of the modeled chlorophyll @ concentration to the in
situ concentration exceeded 5:1 or was less than 1:5 for two or
more models. These rejection criteria were chosen not to be
too. restrictive in order to eliminate only extreme stations.
After the elimination of 54 suspect stations, 919 stations re-
mained in the final SeaBAM data set (Table 3).

3.2. In Situ Chlorophyll a Data

The SeaBAM data set is comprised of fluorometric [Yentsch
and Menzel, 1963; Holm-Hansen et al., 1965] and/or high-
performance liquid chromatography (HPLC) measurements of
chlorophyll ¢ and phaeophytin a (Table 3). For the purpose of
evaluating the suitability of models for global application,
where chlorophyll concentrations range over 3 orders of mag-
nitude, the largest and most representative data set is required.
It was not possible to stratify the SeaBAM data by chlorophyll
method and still achieve global coverage. Therefore HPLC and
fluorometric measurements were merged to form the chloro-
phyll a evaluation data set. HPLC C was preferentially used,
when available, because this method is considered more pre-
cise than fluorometric methods and fluorometric C was used
for subsets which do not contain HPLC data.

The distribution of the chlorophyll a data in the SeaBAM
data and its subsets are illustrated in Figure 1. The concentra-
tions range between 0.019 and 32.79 ug L™! with a geometric
mean of 0.27 ug L', somewhat higher than the global ocean
mean (0.19 ug L) reported by Antoine et al. [1996]. The
BBOP, WOCE, and EQPAC data sets represent most of the
data at the low end of the concentration range. The Carder,
CalCOFTI, and AMT data cover a relatively wide concentration
range, from oligotrophic to eutrophic waters. NABE, North
Sea, Chesapeake Bay, and Canadian Arctic data are mostly at
concentrations over 1 ug L™ If 0.1 and 1 ug L™" are taken as
approximate limits between oligotrophic and mesotrophic wa-
ters and between mesotrophic and eutrophic waters [Antoine et
al., 1996], then the SeaBAM data are approximately composed
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Figure 1. Frequency distribution of Chl a concentration in
the SeaBAM data set (top panel) and in the 11 subsets.

of 23, 59, and 18% of oligotrophic, mesotrophic, and eutrophic
stations, respectively. Comparing these proportions with those
reported by Antoine et al. [1996] for the world ocean (oligo-
trophic: 55.8%; mesotrophic: 41.8%; and eutrophic: 2.4%) re-
veals that the SeaBAM data tend to be overrepresented by
mesotrophic and eutrophic waters. Alternatively, for algorithm
evaluation purposes, where a more uniform distribution over
the concentration range may be desirable, the data set has a
relative insufficiency of concentrations exceeding 7-8 pg L™

3.3. In Situ [C + P]: Data and Estimates

The [C + P] algorithms for SeaWiFS are needed to permit
comparisons with historical CZCS data. Most algorithms we
evaluated estimate C, but several were designed to estimadte
[C + P] (Table 2). Only 448 SeaBAM stations had fluorometric
measurements of both chlorophyll @ and phaeophytin a (Table
3). Since equitable algorithm comparisons require data sets
with similar characteristics and number of stations, a statistical
relationship between C and [C + P] was investigated to allow
reasonable estimates of [C + P] for those stations where only
chlorophyll a was available. A set of 2329 stations sampled
from 1978 to 1996, including those available in the SeaBAM
data with fluorometric measurements of both Chl @ and pha-
eopigment in the 0-10 m depth range, was extracted from the
SeaBASS “Historical Pigment Database” [Hooker et al., 1994].
The data were mostly collected off the U.S. coasts and the
Atlantic and Pacific Oceans by various investigators. Stations
with [phaeo] > [Chl a] (n = 67) were considered extrenie
cases and removed. A type II (RMA) regression on log-
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Table 4. Mean Extraterrestrial Solar Irradiance

F

o
wW cm™? nm™!

Wavelength, nm

SeaWiFS Bands*
412 170.7943
443 189.4438
490 193.6842
510 188.3675
555 185.3973
670 153.3877
765 122.5128
865 ) 99.0214
OCTS Bands®
412 170.96
443 188.17
490 194.59
520 185.74
565 184.49
670 153.12
765 122.61
865 98.55

*H. Gordon, personal communication, 1998.
*Advance Earth Observing Satellite (ADEOS). OCTS Data Process-
ing Algorithms Description version 2.01, NASDA, June 1997.

transformed data yielded the following equation (n = 2262;
R? = 0.993):

[C + P] = 1.34*C09% (1)

It is acknowledged that C and [C + P] cannot be considered
as completely independent variables in the above regression.
The major benefit of this approach is to allow the derivation of
a chlorophyll/[C + P] relationship from a more stable basis
than one based on chlorophyll versus phaeopigment. Because
(1) yielded C/[C + P] ratios comparable to other reported
ratios [e.g., Smith and Baker, 1978; Morel and Berthon, 1989;
Balch et al., 1992], it was used to estimate the [C + P] concen-
tration for stations where the complete fluorometric informa-
tion was missing (n = 471).

3.4. Radiometric Data Adjustments

For algorithms that required normalized water-leaving radi-
ances as input, Rrs was multiplied by the mean extraterrestrial
solar irradiance [Neckel and Labs, 1984] weighted by the spec-
tral response of the relevant sensor bands (see Table 4). In
addition, because the wavelengths required by the various al-
gorithms (Table 2) did not always match those available in the
SeaBAM data (Table 3), several radiometric adjustments were
applied to some data sets. These adjustments were aimed to
enhance the consistency of the algorithm comparison by test-
ing all algorithms using the full dynamic range of available
radiance data (n = 919).

For the first three shorter wavelengths the maximum differ-
ence between data and bands required by the various algo-
rithms is 2 nm and was considered negligible. The major dif-
ferences occur for algorithms that require either 510 or 520 nm
data, while SeaBAM contains a mixture of these pairs of mea-
surements. Similar mismatches exist between algorithms using
either 550, 555, or 565 nm data and SeaBAM data which are
comprised of a mix of these three wavelengths.

3.4.1. 565-555nm. Even though chlorophyll absorbs light
weakly in the 550-565 nm region and the Rrs spectrum is
relatively insensitive to changes in C concentration at these
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wavelengths, 555 and 565 nm data are not interchangeable.
This is particularly evident at low C concentrations, where for
example, substituting Rrs565 for Rrs555 in a band ratio would
give anomalously higher reflectance ratios than those expected
for the clearest waters, based on backscattering data derived
from Morel [1974] and recent absorption coefficients for pure
seawater from Pope and Fry [1997].

The feasibility of estimating Rrs555 from measurements of
Rrs565 was explored using BBOP94-95 data which have con-
current measurements at both wavelengths. A strong linear
relationship was found (n = 78; R* = 0.975):

Rrs555 = 1.0628*Rrs565 + 0.0002 )

Equation (2) was therefore applied to the BBOP92-93
Rrs565 data, to generate proxy estimates of Rrs555, and to the
WOCE data set, which has a narrow range of low C concen-
trations very similar to the BBOP data (Figure 1).

3.4.2. Other radiometric adjustments. Two algorithms,
OCTS-C and POLDER, use radiance data at 565 nm instead
of 555 nm (Table 2). It is inappropriate to invert (2) to gen-
erate proxy Rrs565 from Rrs555 data because its applicability
is restricted to the low C concentrations (<0.4 pg L") used in
its derivation. Another approach was thus used to convert
between 555 and 565 nm and between 510 and 520 nm data. It
uses the reflectance ratios predicted at any given C concentra-
tion by the semianalytic model of Morel [1988] adapted with
Pope and Fry [1997] a,, data. These predicted reflectance ratios
are shown in Figure 2 along with those predicted by the semi-
analytic model of Gordon et al. [1988]. According to these
models, the Rrs555/Rrs565 reflectance ratio decreases from
~1.13 to ~0.97 as C increases from 0.015 to 7 ug L°*, whereas
for the same concentration range, Rrs510/Rrs520 varies from
~1.32 to ~0.95. Contrary to the 555-565 nm region, the 510-
520 nm domain is highly influenced by pigment absorption and
is thus more variable. The Rrs510/Rrs520 versus C and Rrs555/

1.4 ————

——0—— Morel (1988) 510/520
1.3 -----0---- Morel (1988) 555/565 —
——%—— Gordon et al. (1988) 510/520
12l ----%--- Gordon et al. (1988) 555/565
o
RN R
[
1 -
09 |-
08 ;
0.01 0.1 I 10 100

Chla (ugll)

Figure 2. Ratios of Rrs510/Rrs520 and Rrs555/Rrs565 pre-
dicted from semianalytic models of Morel [1988] and Gordon et
al. [1988] as a function of [Chl a].
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Rrs565 versus C relationships derived from Morel’s model
were used as a basis for estimating Rrs at one wavelength from
the other as a function of in situ C concentration.

3.5. Final Rrs-Chlorophyll Data Set

The Rrs490/Rrs555 ratio versus in situ C for the SeaBAM
data and for its subsets is shown in Figure 3. The figure illus-
trates the dynamic range associated with each subset and of the
combined data set. The dispersion (orthogonal to main axis) of
the data is another informative feature of these plots. The
CalCOFI data set, for instance, appears very coherent,
whereas some other data sets are slightly noisier. Although
SeaBAM data originate from various investigators and were
processed differently by different people, the variability in the
radiometric data is reasonably limited. At high C concentration
the dispersion of radiance ratios in the SeaBAM data in-
creases, mostly because of the presence of Case II waters. The
shape of the scatterplot for the SeaBAM data is clearly sigmoid
(in log-log space) as predicted by the Morel [1988] and Gordon
et al. [1988] models. This trend, though less marked, is seen in
the CalCOFI data. At lowest C concentrations the highest
Rrs490/Rrs555 ratios are slightly lower than the theoretical
limit (~6.66) for clear natural waters.

4. Algorithm Evaluation Criteria

A variety of statistical and graphical criteria were used to
evaluate agreement between C, estimated by the various mod-
els, and in situ C (Table 5). Statistical comparisons between in
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Figure 3. Scatterplots of Rrs490/Rrs555 versus in situ [Chl
a] for the SeaBAM data set (top left panel) and in the 11
subsets. The RMA regression line for the data set is repeated
in each of the 11 subset plots as a reference.
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Table 5. Criteria for Model Evaluation (Log-Transformed
Data)

Evaluation
Statistical
Regression slope 1+0.01
Regression intercept 0+0.01
Bias 0+0.01
R? >0.9
RMS <0.185
Negative estimates none
Graphical

Scatter linear distribution; few outliers
(model:in situ, <5:1 and >1:5)

linear; data overlap the 1:1 line;
no discontinuities

congruency with in situ data -

Quantile-quantile

Relative frequency

situ C and model C were based on log-transformed data, in
part, to encompass the several-orders-of-magnitude variation
in C, and because log-transformed C was more normally dis-
tributed than untransformed data (Figure 1) [also see Camp-
bell, 1995a]. The slope and intercept of the linear equation
relating model to in situ data was computed using a type II
(reduced major axis) functional regression model which is con-
sidered the appropriate model when the assignments tox ory
axes are arbitrary and when substantial variance is expected in
both variables [Ricker, 1973; Laws and Archie, 1981; Press and
Teukolsky, 1992]. Statistics (Table 5) such as regression slope
and intercept, coefficient of determination (R*) and root-
mean-square error (RMS) provide a numerical index of model
performance but may not indicate nonlinear trends or other
important features in the relationship between model and in
situ data. Several complementary graphical portrayals were
constructed to illustrate these features, including standard
scatter, relative frequency, and empirical quantile-quantile
plots [Chambers et al., 1983], hereinafter abbreviated as g-q.
The g-q plot, when both sets have the same number of obser-
vations, as is our case, is simply a plot of the model data sorted
(ascending order) against the sorted in situ data.

5. Algorithm Evaluation Results

The statistical results of the algorithm evaluation are pre-
sented in Table 6. Graphical results for 12 algorithms, selected
because they represent a particular functional form or satellite
sensor, are illustrated in Figure 4. . .

In general, all algorithms performed reasonably well, at least
in part of the whole concentration range. It is noteworthy that
two [C + P] algorithms used extensively to process CZCS data,
the GPs and Clark three-band, tended to underestimate in situ
[C + P] (Table 6 and Figure 4). Relative frequency distribution
plots reveal that modes for these models are close to the in situ
[C + P] mode but that both models overestimate the frequency
of low concentrations. A discontinuity induced by the equation
switch in the GPs (Table 2) is evident in the q-q plot. The
statistical artifacts in CZCS [C + P] retrievals resulting from
the GPs algorithm switch (e.g., bimodality, frequency discon-
tinuity) have been reported elsewhere [Muller-Karger et al.,
1990; Denman and Abbott, 1988; Campbell, 1995b].

A discontinuity is also observed with the Aiken-C algorithm
which switches from the hyperbolic to the power equation at 2
ne L, and there is a marked curvature evident in scatter and
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Table 6. Summary of Statistical Results of Algorithm Evaluations

Rank Algorithm N Intercept Slope Rsq RMS Bias Nonlinear Discontinuity
1 Morel-1 919 0.038 0.975 0.917 0.179 0.052 X
2 Morel-3 919 0.040 0.970 0.915 0.183 0.058
3 CalCOFI 2-band cubic 919 0.072 0.980 0.918 0.190 0.083
4 OCTS-C 919 0.054 1.148 0.933 0.190 -0.030
5 Carder (global) 919 —0.033 0.990 0.876 0.213 -0.027
6 CalCOFI 2-band linear 919 0.074 0.991 .0.915 0.192 0.079
7 Morel-2 919 0.081 1.037 0.915 0.190 0.060
8 CalCOFI 3-band 919 0.062 0.939 0.908 0.205 0.097
9 Morel-4 919 0.102 1.059 0.907 0.204 0.069
10 Siegel-Garver (global) 919 —0.012 0.928 0.734 0.311 0.029
11 GPs 919 —0.239 1.004 0.923 0.292 -0.241 X
12 CalCOFI 4-band 919 0.073 0.934 0.900 0.218 0.110
13 POLDER 919 0.215 1.190 0.921 0.241 0.107
14 Carder (subtropical) 919 —0.128 1.073 0.872 0.284 —0.169
15 Aiken-C 877* —0.094 1.083 0.774 0.330 —-0.139 X X
16 Aiken-P 877* —0.120 1.118 0.787 0.339 —-0.168 X X
17 Clark 3-band 919 —0.306 0.913 0.905 0.323 -0.267
18 Siegel-Garver (BBOP) 919 0.141 0.776 0.896 0.345 0.269
19 OCTS-P 919 —0.345 1.750 0.913 0.842 —0.680 X

*Forty-two negative estimates.

q-q plots. Aiken et al. [1995] noted that an insufficient number
of high chlorophyll stations in their data set prevented the
fitting of a single hyperbolic equation to the entire set. Note
also that this model generated negative concentrations for 42
stations because it uses a “clear water” Rrs490/Rrs555 limit
(5.29), which is below that observed for these stations.

Considering the two semianalytic algorithms, the Carder
algorithm yielded better overall agreement with in situ C than
the Garver/Siegel model. As described earlier, the philosophy
of model inversion is very different in these models despite the
fact they are both based on the same formulation linking Rrs
to absorption and backscattering. The parameterization in
these two models is also very different. For instance, some of
the coefficients in the Carder model were based on specific
tuning to in situ data, whereas the Garver/Siegel model uses
parameters available in the literature without any particular
tuning. Compared with the SeaBAM data, the Garver/Siegel
model underestimated the lowest concentrations as well as
concentrations above 1 ug L. The Carder subtropical model
(Table 6) performed well in the midconcentration range, while
it generally underestimated concentrations at the low and high
ends of the range. In sharp contrast the Carder global model
performed as well as several of the best empirical models (see
Table 6). For both semianalytic models, the outliers in the 1-10
wg L concentration range are Case II stations.

A residual sigmoid pattern in the g-q plots is a recurrent
feature in several algorithms (e.g., GPs, Clark three-band, Cal-
COFI three-band, CalCOFI four-band, Morel-1, OCTS-C).
The Morel-1 and Morel-3 algorithms use Rrs443/Rrs555, but it
is clear from the q-q plots that Morel-3, the cubic polynomial,
agrees better with the 1:1 line. The relative frequency plot also
shows a better agreement between modeled and actual data for
the Morel-3 algorithm. Another interesting aspect also well
illustrated by the Morel-1 and -3 algorithms is the lower dis-
persion of the data at low C concentrations, typical of algo-
rithms using the 443/555 ratio.

The OCTS and POLDER are the operational algorithms
used for the 9 months of data collected by ADEOS. The
POLDER algorithm gives reasonable estimates at concentra-
tions under 0.4 ug L, but it overestimates higher concentra-
tions. The OCTS-C algorithm exhibits some curvature along

the concentration range, and its slope departs significantly
from 1, but the negative bias is small (Table 6), and the algo-
rithm behaves well globally.

Among the CalCOFI algorithms, the best results are ob-
tained with the two-band cubic polynomial function. The algo-
rithm performs well at all concentrations except at the lower
end where it overestimates concentrations. It is noteworthy
that in this particular case, an increasing complexity in the
formulations (three and four bands used in quadratic func-
tions) did not increase overall performance of these algo-
rithms.

The algorithms are ranked according to their overall statis-
tical performance in Table 6. Evidence of model discontinui-
ties or nonlinearity is also summarized in this table. For each
statistical parameter, the algorithms were ranked (slope closest
to 1, intercept and bias closest to 0, highest R*), and these
scores were summed to yield the overall final rank. While this
ordination scheme arbitrarily gives the same weight to each
statistical parameter, it nevertheless does indicate the overall
performances of the various models. Features such as discon-
tinuities, curvatures, and mismatches in relative frequency with
in situ were not used in the ranking. Consideration of these
aspects would reduce the rank of some algorithms which are
highly ranked. For example, the Morel-1, CalCOFI two-band,
and CalCOFI cubic and OCTS-C are ranked higher than other
empirical algorithms, but the graphical results show nonlinear
trends for several of them. In summary, empirical equations
generally performed better than the semianalytic algorithms
and when considering both statistical and graphical criteria,
those using cubic polynomial formulations, such as Morel-3
and CalCOFI cubic, performed best.

6. Analysis of Functional Forms

The empirical models tested above vary in their formulation
and complexity and collectively represent approaches of the
last two decades. They use single or multiple band ratios and
different formulations: power function, multiple regression,
hyperbolic, second-order and third-order polynomials, and
most use log-transformed data. Since these algorithms were
developed and tuned using different data sets, it is difficult to
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Figure 4. Comparisons between model and in situ data: (top) Gordon GPS, Clark three-band, Aiken-C,
Carder (global), Garver/Siegel (global), and OCTS-C models; (bottom) POLDER, CalCOFI cubic, CalCOFI
three-band, CalCOFI four-band, Morel-1, and Morel-3 models. From top to bottom: Scatterplots; quantile-
quantile plots; relative frequency of model (thin black line) and in situ (thick faint line); band ratio versus in
situ C for two-band ratio algorithms (pluses) and band ratio versus model (curve). Note that the axes for each
row of figures are shown in column 1. Also shown are lines indicating model: in situ ratios of 1:5 and 5:1.
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Table 7. Ocean Chlorophyll Algorithms (Empirical Algorithms Tuned to the SeaBAM Data)

Coefficient
Functional
Algorithm Form Band Ratio (R) a0 al a? a3 a4
OCla power R = log(Rrs490/Rrs555) 0.3734 —2.4529
OC1b geometric R = log(Rrs490/Rrs555) 0.3636 —2.3500 —0.0100
OClc quad. poly. R = log(Rrs490/R1s555) 0.3920 —2.8550 0.6580
OC1d cubic poly. R = log(Rrs490/Rrs555) 0.3335 —2.9164 2.4686 —2.5195
0C2a MCP R = log(Rrs412/Rrs555) 0.2457 —-1.7620 0.2830 0.1035 —0.0388
0OC2b MCP R = log(Rrs443/Rr1s555) 0.1909 —1.9961 1.3020 —0.5091 —0.0815
oc2 MCP R = log(Rrs490/Rrs555) 0.3410 —3.0010 2.8110 —2.0410 —0.0400
OoC2d MCP R = log(Rrs510/Rrs555) 0.4487 —4.3665 2.7130 —0.2698 —0.0821
0C2e MCP R = log(Rrs520/Rrs555) 0.5072 —6.2432 2.7787 3.3845 —0.0413
0C3d MCPp R = log((Rrs443 > Rrs490)/Rrs555) 0.3483 —2.9959 2.9873 —1.4813 —0.0597
0OC3e MCP R = log((Rrs443 > Rrs520)/Rrs555) 0.5179 —4.7478 6.7321 —4.1287 —-0.0121
OC4 MCP R = log((Rrs443 > Rrs490 > Rrs510)/Rrs555) 0.4708 —3.8469 4.5338 —2.4434 —0.0414

Formulations: Power, C = 10(*°*41"R); geometric, C = 101041 "®) +42; quadratic polynomial, C = 10©0+e1"R+a2*RD: cybic polynomial,
C= 10(a0+a1*R+a2*R +a3*R7). MCP. C = 10(a0+a1"R+a2*R2+a3*R3) + a4
3 b -

use their results to determine which formulations have the
highest potential merit. To investigate this aspect, several sim-
ple empirical formulations were “tuned” to the SeaBAM data
to achieve a slope of 1.000 and an intercept of 0.000, maximum
R?, and minimum RMS.

The power equation has been widely used to relate radiance
ratios to C, in part, due to the relative ease of derivation of
model parameters using a simple linear regression of log-
transformed data [e.g., Clark, 1981; Smith and Baker, 1982;
Gordon et al., 1983; Mitchell and Holm-Hansen, 1991]. Despite
its simplicity, the power model (Table 7) captures a large
fraction of the variation in radiance band ratios and the 3-or-
ders-of-magnitude variation in C (Figure 5). It is.clear that the
power model fits the most frequent, central data but does not
fit the extremes well. There is a significant overall sigmoid
pattern evident in the scatter and g-q plots. This residual cur-
vature results from the inability of power equations to capture
the inherent sigmoid relationship between commonly used
band ratios and in situ C in log-log space. Additionally, the
relative frequency distribution of model C is much broader
than in situ.

Geometric models have been used only rarely. One example
was reported by Hojerslev [1981]. Compared with the power
equation, the geometric model agrees better with in situ C at
low concentrations, but neither captures the inherent sigmoid
pattern evident in plots of band ratios versus C which conse-
quently results in a “residual” sigmoid trend in the plot of
model C versus in situ C (Figure 5).

A quadratic polynomial (second order) achieved a better
match with highest in situ C than the power model but a
relatively poorer match with lowest C values (Figure 5). The
POLDER, CalCOFI two-band cubic, Morel-3, and Morel-4
algorithms use a cubic polynomial (third-order) equation and
generally performed better than most other algorithms tested.
Our fit of a cubic polynomial equation to SeaBAM Rrs490/
R1s555 and C data matches the mode of the in situ distribution
(relative frequency plots) better than the power, geometric, or
quadratic models, but like these other models, it does not
simulate well low C concentrations, and the frequency distri-
bution around the mode is still too broad relative to that of in
situ C (Figure 5). In the case of the SeaBAM data, no major
improvements are observed when. coefficients are derived for
higher-order polynomials (i.e., order >3).

Several other conventional two-band and three-band ratio

algorithms were explored. A simple hyperbolic equation did
not fit the SeaBAM data well (not shown). This might be
expected because this model assumes symmetry, while the tails
(asymptotes) of the Rrs490/Rrs555 versus C joint distribution
are not symmetrical. Some band combinations in cubic poly-
nomials (e.g., (Rrs443 + Rrs490)/Rrs555, or (Rrs443 +
Rrs490 + Rrs510)/RrsS55, not shown) have interesting poten-
tial but did not yield to major improvements over the use of a
simple Rrs490/Rrs555 band ratio.

7. Discussion
7.1. SeaBAM Data Set

This analysis is based on the largest in situ data set ever
assembled (to our knowledge) for ocean color algorithm stud-
ies. However, our algorithm evaluations are only as good as the
data set itself. The data quality control procedures were de-
signed to identify extreme outliers and erroneous data, but the
rejection criteria were deliberately not too severe, so some of
the remaining stations may still depart slightly from the general
trend. Differences in data acquisition methodologies (e.g.,
above-surface versus in-water measurements), radiometer de-
signs, calibrations, data processing, and environmental factors
(sea and sky state) are probably responsible for part of the
variability observed. If radiometric data were measured and
processed in a more consistent manner, the dispersion within
some of the subsets might be reduced [see Siegel et al., 1995],
but it is not certain that dispersion (orthogonal to axial trends;
see Figure 3) in the SeaBAM data would decrease, because the
data set would still reflect the real inherent variability in bio-
optical properties of the waters represented by the various
subsets.

The SeaBAM chlorophyll data set was formed by merging
HPLC and fluorometric measurements of chlorophyll to en-
compass the largest possible range of data and bio-optical
provinces. The consequences of using either fluorometric or
HPLC chlorophyll are difficult to assess mostly because limited
information about the relationship between HPLC and fluoro-
metric data is available in the literature [e.g., Trees et al., 1985;
Bricaud et al., 1995]. Moreover, the equivalence of these two
measurements may vary with season, location, depth and con-
centration range of data, as well as the way pigments were
separated and the kind of statistical analyses performed. Flu-
orometric concentrations are, usually, higher than HPLC esti-
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Figure 5. Comparisons between models tuned to the SeaBAM data set and in situ data: OCla (power),
OC1b (geometric), OClc (quadratic polynomial), OC1d (cubic polynomial), OC2 (modified cubic polynomi-
al), and OC4 (maximum band ratio) algorithms. See Figure 4 caption for additional details.

mations (e.g., in the SeaBAM data), but it is unrealistic to
consider a unique relationship between the two methods to
convert data from various dates and regions. Given these un-
certainties, it seemed prudent not to apply any fluorometric/
HPLC conversion scheme to the SeaBAM data. Additional
independent analyses are required which evaluate the compa-
rability of fluorometric and HPLC chlorophyll a and the im-
pact of blending measurements from these two methods on
algorithm validation and calibration.

Whether the SeaBAM data adequately represent global bio-
optical variability is another important question. Several major
bio-optical provinces of the world ocean are poorly or not
represented; the data set contains very little data from polar
regions, none from Antarctica, and an insufficient number of C
observations above 8 and below 0.03 pg L. Future expansion
of the SeaBAM data set should not be considered as a simple
increase in the number of stations available but rather as an
increase in the diversity of bio-optical conditions it encom-
passes. Since radiometric bands separated by 10 nm (i.e., 510
versus 520 nm, or 555 versus 565 nm) are not interchangeable,
radiometric adjustments such as those we performed are, in
the present state of the data set, necessary to ensure that
algorithm comparisons and analyses are equitably based on the
complete set of 919 stations. Additions to the SeaBAM data
set should therefore take into consideration the increasing
need for intercomparison and evaluation of data or algorithms
related to various satellite sensors (e.g., CZCS, OCTS,

POLDER, SeaWiFS, MODIS). This underscores the impor-
tance of acquiring in situ observations which include all wave-
lengths involved (Table 1). Correction for instrument self-
shading at high C is also advisable, although recent results
from Kahru and Mitchell [1998a] suggest that the correction for
the Lwn490/Lwn555 band ratio is probably small (e.g., mean of
<10% for 11 stations, with C between 10 and 32.5 ug L™1).

7.2. Empirical Versus Semianalytical Algorithms

The semianalytic algorithms evaluated yielded results infe-
rior to those from several empirical expressions. Yet semiana-
lytic algorithms are potentially much more useful because they
allow the derivation of other in-water, optically active constit-
uents besides C, such as nonchlorophyllous absorption,
CDOM, or backscattering. In their present state, semianalytic
algorithms are handicapped by their design and parameteriza-
tion. Because they may employ four or more radiance bands,
semianalytic algorithms also require more consistent data sets
with high spectral fidelity in order to perform as well as or
better than simple two-band empirical algorithms. Some sim-
plifying assumptions, not always true in the world ocean, are
used to limit the number of unknowns in semiempirical mod-
els. These assumptions often result in making constant some
parameters which actually vary in the ocean (e.g., the slope in
detrital absorption). Other limitations come from the param-
eterization of some terms used in the Rrs = f(b,/(a + b,))
equation. Most of these are wavelength dependent but some
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Table 8. Statistical Results for Chlorophyll Algorithms
Tuned to SeaBAM Data

Algorithm Type-Wavelengths, nm Rsq RMS
OCla power-490, 555 0.915 0.175
OC1b geometric-490, 555 0.912 0.178
OClc quadratic-490, 555 0.917 0.173
OC1d cubic-490, 555 0.918 0.172
0OC2a MCP-412, 555 0.892 0.197
OC2b MCP-443, 555 0.916 0.173
oc2 MCP-490, 555 0.918 0.172
ocC2d MCP-510, 555 0.849 0.235
0OC2e MCP-520, 555 _ 0.744 0.311
0C3d MCP, MBR-443, 490, 555 0.928 0.161
0C3e MCP, MBR-443, 520, 555 0.921 0.169
oc4 MCP, MBR-443, 490, 510, 555 0.932 0.156

For all algorithms, N = 919, intercept = 0.000, slope = 1.000, and
bias = 0.000. MCP, modified cubic polynomial; MBR, maximum band
ratio.

terms, such as specific absorption coefficient of phytoplankton
a%y, are dependent on phytoplankton concentration or phy-
toplankton community structure, which depend on the trophic
status of the waters [Mitchell and Kiefer, 1988; Bricaud and
Stramski, 1990; Cleveland, 1995; Sosik and Mitchell, 1995]. This
suggests it may be necessary to use a parameterization which
takes biological/ecological variability into account [e.g., Cleve-
land, 1995; Bricaud et al., 1995]. Other parameterization weak-
nesses exist at high C concentrations [see Morel, 1997] which,
in the case of the Carder algorithm, are partially canceled by
the use of an empirical default algorithm. The improved results
obtained with the “global” version of both semianalytic models
(Table 6) are encouraging examples showing that when appro-
priately parameterized, these algorithms can achieve global
estimates which are reasonably accurate. Some of these pa-
rameterization problems may cancel at local or regional scales
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Figure 6. Relationship between chlorophyll and Rrs490/
Rrs555 for the ocean chlorophyll 2 empirical algorithm (solid
curve) and Gordon et al. [1988] (dashed curve) and Morel
[1988] (dotted curve) semianalytic models. In situ Rrs490/
Rrs555 versus in situ C (pluses). (The a,, coefficients used in
semianalytic models are from Pope and Fry [1997]; b,,, coef-
ficients are from Morel [1974].
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where variability introduced by biological processes may be
more limited. At present the predictive skill of the semianalytic
algorithms remains, however, inferior to that of empirical al-
gorithms when applied to widely varying bio-optical provinces.
Until such domains are well sorted and understood, the most
conservative approach for acquiring a global satellite chloro-
phyll data set is the use of a globally tuned empirical algorithm.

7.3. New Formulations for Empirical Algorithms

Most algorithms presented here perform reasonably well,
and several may be used with satisfactory results for particular
regions or concentration ranges. Those performing best over
the whole C concentration range are based on cubic polyno-
mials. However, none of them fit the low C values very well.

7.3.1.  Ocean chlorophyll 2 (OC2), modified cubic polyno-
mial. In our attempts to fit a cubic polynomial to the Sea-
BAM data, we were also not able to capture the lowest C-
highest ratios of Rrs490/Rrs555 without compromising the fit
elsewhere. Inspection of scatterplots and q-q plots suggested
that the cubic polynomial formula required an additional cor-
rection term (coefficient) which influences the shape of the
curve at low C but has little effect at higher concentrations.
Such a “modified cubic polynomial” (MCP) formula (Table 7),
named “ocean chlorophyll 2” (OC2), yielded very good statis-
tical results when tuned to the SeaBAM data (R* = 0.918;
RMS = 0.172 (Table 8)). Algorithm tuning involved determi-
nation of MCP coefficients using iterative minimization rou-
tines (IDL, Research System Incorporated) to achieve a slope
of 1.000 intercept of 0.000, minimum RMS of q-q, and maxi-
mum R? between model and observed chlorophyll data.

The agreement between the OC2 model and the in situ data
throughout the range of C is excellent, and the relative fre-
quency distributions of model and in situ C are highly congru-
ent (Figure 5). The OC2 model captures the inherent sigmoid
relationship between in situ band ratio and C, evident in semi-
analytic models such as Gordon et al. [1988] and Morel [1988]
(Figure 6). Our empirical fit (OC2) suggests that the sigmoid
relationship is asymmetric, with steeper curvature at low C
than at high C concentrations (but more observations with C
above 20 pug L' are required to confirm this). At low C the
OC2 asymptotically approaches the expected clear water value
(~6.6, Table 9) for the Rrs490/Rrs555 radiance ratio.

7.3.2. Ocean chlorophyll 4 (OC4), maximum band ratio
algorithm. In the algorithm evaluation the global processing
switching (GPs) algorithm yielded one of the highest coeffi-
cients of determination (R? = 0.927) between in situ and

Table 9. Clear Water Values for Band Ratios With Rrs555
in Denominator As Predicted by Model Using b,/a + b,
Formulation and Model Based on b,/a Relationship (With
a,, Values From Pope and Fry [1997] and b,,,,, From Morel
[1974]

Rrs Band MCP
Ratio Rrs = f(by/(a + b,))  Rrs = f(by/a)  Algorithm
412/555 27.61 47.03 28.52
443/555 16.53 21.78 11.91
490/555 6.13 6.66 6.80
510/555 2.52 2.58 3.12
520/555 1.87 1.89 2.42

Clear water values predicted by the MCP equations derived from the
SeaBAM data set (Table 7) are also indicated.
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model. The GPs achieves this by switching from a 443/550 to a
520/550 band ratio, thereby avoiding the relatively lower and
noisier 443/555 ratios when C exceeds ~1.5 ug L', The GPs
algorithm follows the well-known shift of the maximum of Rrs
spectra toward higher wavelengths with increasing C. The
strategy behind the GPs is sound and insightful, but the switch-
ing between power equations leads to the artifacts described
above.

With this in mind, a strategy was devised to maximize model
precision over the entire chlorophyll concentration range. The
functional form of this algorithm, named ocean chlorophyll 4
(OC4), is a modified cubic polynomial relating a band ratio to
C (Table 7). The significant departure from previous band
ratio algorithms is that the band ratio is determined by which-
ever ratio, Rrs443/Rrs555, or Rrs490/Rrs555, or Rrs510/
Rrs555, is greatest. Thus the OC4 maximum band ratio (MBR)
model uses three-band ratios but only a single set of coeffi-
cients in a single MCP equation. Similar MBR models for
three-band combinations are shown in Table 7.

After tuning to the SeaBAM data set, the OC4 model yields
an R” of 0.932 and RMS of 0.156 (Figure 5, Table 8). Of the
three-band ratios considered, Rrs443/Rrs555 was maximal
from lowest C to values of ~0.3 ug L''; Rrs490/Rrs555 gener-
ally dominated between 0.3 and ~1.5 ug L'; and Rrs510/
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Figure 7. Ocean chlorophyll 4 algorithm. (top) In situ band
ratio versus C. OC4 model is represented by curved line. The
in situ data are represented by symbols indicating dominant
band ratio. (bottom) Cumulative relative frequency distribu-
tion of maximum band ratios showing regions of dominance
overlap between Rrs443 and Rrs490 and between Rrs490 and
Rrs510 (vertical lines at 0.3 and 1.5 pg L™, respectively).
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quantile plot using simulated radiance ratios with random
noise added.

Rrs555 dominated when C exceeded ~1.5 pug L* (Figure 7
(top)). Note that the ranges of dominant band ratios overlap by
~10-30%, so there is a smooth transition from Rrs443/Rrs555
to Rrs490/Rrs555 to Rrs510/Rrs555 with decreasing band ratio
(Figure 7 (bottom)). This overlap is a desirable property be-
cause it implies that discontinuities in frequency distributions
of C estimated with OC4 are unlikely.

Possible discontinuities in the OC4 model were investigated
by subjecting OC4 to a large, continuously varying population
of simulated radiance ratios with random noise added. To
simulate all band ratios involved in the OC4 model, a MCP
equation was derived for each (Table 7), similar to the OC2
model. By inverting these equations it was then possible to
generate values for all radiance ratios for any given chlorophyll
concentration. Random noise was introduced as a function of
C concentration and wavelength [André and Morel, 1991] so
that several realistic band ratio combinations could be gener-
ated at each C concentration. OC2 served as a reference since
it does not generate any discontinuities for C between 0.001
and 100 wg L. If discontinuities were present, we would
expect them to appear near C values of 0.3 ug L™ and 1.5 ug
L™, the general regions where dominant band ratios shift (Fig-
ure 7 (bottom)). The q-q comparison shown in Figure 8 indi-
cates that no discontinuities were observed. While further tests
are needed, these results indicate that discontinuities do not
result from maximum band ratio models such as OC4 when
ample overlap exists between adjacent dominant band ratios,
as is the case for the SeaWiFS bands.

This maximum band ratio model is a new approach in em-
pirical ocean color algorithms. It has the potential advantage of
maintaining the highest possible satellite sensor signal:noise
reflectance ratio over a broad range of C concentrations. This
aspect is important for passive ocean color sensors aboard
satellites since normalized water-leaving radiances retrieved
for the 443 nm band, after atmospheric correction, may be
quite low or below the sensor detection threshold in chloro-
phyll-rich coastal water or offshore phytoplankton blooms
[Gordon, 1987]. The MBR model may also be a useful ap-
proach with sensors having many radiance bands (e.g., MODIS
or hyperspectral data). MBR models such as OC4 might also
be useful to define operationally three ocean realms with re-
spect to trophic status: oligotrophic (<0.3 ug L™!), mesotrophic
(0.3-1.5 pg L"), and eutrophic (>1.5 ug L), depending on
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whether radiances in the 443, 490, or 510 nm bands dominate.
The scheme parallels that described by Antoine et al. [1996] in
a study based on CZCS data.

7.4. Comparisons Between Contemporary and Historical
Ocean Color Data

There is keen interest in the ocean color community in
assessing long-term (decadal) changes in phytoplankton bio-
mass, and primary productivity in the world oceans, and par-
ticular interest in investigating the potential influences of cli-
mate change on the magnitude or redistribution of oceanic
productivity. The CZCS mission, from 1978 to 1986 [Yoder et
al., 1988; Hooker et al., 1992; McClain, 1993], established a
baseline which may be compared with time series developing
or anticipated from contemporary ocean color sensors such as
SeaWiFS, OCTS, and MODIS. The comparability between
ocean color products embraces various aspects such as sensor
characteristics and the way data should be processed and at-
mospherically corrected. Accurate comparisons also require
that similar products be compared (i.e., chlorophyll a or [C +
P]). The primary CZCS product was [C + P], defined as the
sum of chlorophyll @ + phacophytin ¢ as measured by the
fluorometric method. However, since fluorometric phaeophy-
tin determinations are often contaminated by the presence of
other forms of chlorophyll [Lorenzen and Jeffrey, 1980; Trees et
al., 1985; Vernet and Lorenzen, 1987], the definition of [C + P]
is confounded and imprecise. Also, improvements in HPLC
technique and new equipment and methods for fluorometric
measurements of chlorophyll a [e.g., Welschmeyer, 1994] will
make it increasingly difficult to compare new “sea truth” chlo-
rophyll data with earlier fluorometric [C + P] estimates used as
sea truth for the CZCS mission. For these reasons it appears
preferable that comparisons between past and new ocean color
data be based on chlorophyll a. This implies a need to repro-
cess the CZCS data using a suitable chlorophyll algorithm.

Because the SeaBAM data set was designed primarily for
SeaWiFs, its radiometric composition is less suited for devel-
oping a CZCS chlorophyll algorithm. The only CZCS chloro-
phyll algorithm which can be derived without radiometric ad-
justments of the SeaBAM data must use 443 and 555 nm
(accepting the practical equivalence of Rrs550 and Rrs555).
CZCS algorithms employing radiance data from 443, 520, and
550 nm bands using a maximum band ratio approach, such as

used in OC4, might be suitable for CZCS reprocessing. For
instance, the ocean chlorophyll 3e (OC3e), a three-band algo-
rithm (Table 7), gives better agreement with in situ C than
OC2b (Table 8). Even though Rrs490 is not used in OC3e,
there appears to be sufficient overlap (~10%) to ensure a
smooth transition between dominance by Rrs443/Rrs555 and
Rrs520/Rrs555 at low and high concentrations of .C, respec-
tively (Figure 9). These results, although promising, must be
considered preliminary because in 85 of the 157 instances
where Rrs520/Rrs555 was the dominant band ratio (Figure 9),
Rrs520 data were estimated from the adjacent Rrs510 band, as
described in section 3.4.2.

8. Conclusion

The major focus of this paper was the identification of an
algorithm which would allow estimates of in situ C concentra-
tions from SeaWiFS data with the highest possible accuracy
and precision over a wide range of bio-optical conditions.
While several SeaWiFS-compatible algorithms performed
well, the SeaBAM participants [Firestone and Hooker, 1998]
recommended OC2 as the at-launch SeaWiFS operational
chlorophyll a algorithm for several reasons. The potential ro-
bustness of an algorithm tuned to a large and quality-
controlled data set is a major reason. The simple and reversible
functional form used by OC2, as well as its statistical and
graphical results, were considered superior to other formula-
tions evaluated. Its use of the 490 nm band allows reliable
chlorophyll estimates over a wide range of concentrations;
Statistical results using the 490/555 band ratio were superior to
any other two-band combination (Table 8), as was also re-
ported by Aiken et al. [1995]. Despite their evident benefits at
low and midconcentrations, two-band algorithms based on the
443/555 ratio were rejected because they gave less precise
estimates at high chlorophyll concentrations and because there
existed uncertainties associated with atmospheric corrections
of sensor radiances at low wavelengths [e.g., Gordon, 1987].
While the 443 nm band is nearer the chlorophyll absorption
peak than the 490 band and should therefore be more respon-
sive to variation in chlorophyll a concentration, the 443 band is
also more likely to be influenced by CDOM absorption which
decreases exponentially with increasing wavelength [Bricaud et
al., 1981; Roesler et al., 1989]. It must also be kept in mind that
the 490 nm band works well in band ratio algorithms such as
OC2 because of the usually strong correlation between chlo-
rophyll a, accessory pigments such as carotenoids, and other
covarying substances influencing absorption and reflectance at
490 nm [Yentsch, 1960; Aiken et al., 1995]. This covariance of
in-water optical properties influencing Rrs at 443 and 490 nm
is also implied by their high correlation (R* = 0.92, log-
transformed data) in the SeaBAM data. Reduced accuracy
should therefore be expected from OC2 when phytoplankton
pigment composition, pigment-packaging, or bio-optical con-
ditions deviate markedly from those embodied in SeaBAM
data [e.g., Kahru and Mitchell, 1998b]. Additional drawbacks in
using OC2 are that it must be validated using new independent
observations and that it, or any algorithm derived from the
SeaBAM, will inherit the limitations of the SeaBAM data.
While results for OC4 were superior to OC2, OC4 is not so
suitable as the initial operational algorithm for SeaWiF$S be-
cause its use would require accurate atmospheric corrections
and on-orbit calibrations in four bands (instead of two), and
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this can be assessed only after the collection of sufficient data
to validate and fine tune the sensor calibrations.

The SeaBAM data, collected in many oceanic provinces, are
reasonably coherent, implying that OC2, derived from these
data, should perform reasonably well for tropical, subtropical,
and temperate waters. It is unlikely, however, that any single
equation would equitably render all bio-optical diversity
present in the world ocean. For example, while still not well
understood, evidence is accumulating that polar waters have
bio-optical properties which differ from lower-latitude oceanic
Case I waters [Mitchell and Holm-Hansen, 1991; Mitchell, 1992;
Cota, 1997]. Moreover, CDOM, “package effects” [Kirk, 1975;
Morel and Bricaud, 1981] and phytoplankton species composi-
tion are important factors ruling light-related phenomena in
Antarctica [Mitchell and Holm-Hansen, 1991; DiTullio and
Smith, 1996; Claustre et al., 1997]. In the context of results
presented by Mitchell [1992], any algorithm derived from low
and midlatitude Oceanic Case I data might be expected to
underestimate C concentration in Antarctic waters. On the
basis of some recent optical measurements collected in the
Ross Sea, the converse trend may also be observed [Schieber,
1998]. Coccolithophorid blooms [Balch et al., 1991; Ackleson et
al., 1994; Brown and Yoder, 1994] and perhaps cyanobacteria
blooms, are other examples of situations where algorithms
derived from Case I waters dominated by other species are
likely to fail. Case II waters present additional complications
and challenges as they can be of different types depending on
whether they are dominated by CDOM, nonchlorophyllous
particles, or a variable mix of both [Carder et al., 1989; see also
Siegel and Michaels, 1996 about CDOM in Case I waters].
Specific algorithms or different parameterizations will be re-
quired to handle these kinds of situations or regions.

Algorithms designed for use at global scales are likely to be
less accurate at local and regional scales than those developed
for particular regions or bio-optical conditions, and vice versa.
For local and regional studies the use of a regionally parame-
terized algorithm makes sense, but for the purpose of produc-
ing chlorophyll maps at global scale, it would be very difficult
to use a patchwork of regional algorithms because of consis-
tency and transition issues between algorithms, and the funda-
mental lack of data in many regions. The calibration and val-
idation activities planned for SeaWiFS will allow extensive
testing of OC2 and other algorithms and will determine
whether algorithm modifications or adjustments are required
to achieve the most reliable global estimates of phytoplankton
biomass.

Notation
a(A) absorption coefficient, m™?.
a4, (A) absorption coefficient for particulate and
dissolved matter, m ™.
a,(A) absorption coefficient for CDOM, m™ .

a,,(A) absorption coefficient for phytoplankton, m™".
a,,(\) absorption coefficient of pure seawater, m™".
b,(A) backscattering coefficient, m ™.

by,(X) backscattering coefficient for particles, m™".

b,,, (1) backscattering coefficient of pure seawater, m™>.

C chlorophyll a concentration, ug L™
E, (z, ) downwelling irradiance at depth z and
wavelength A, uW cm™2 nm™ . :

Fo()\) mean extraterrestrial solar irradiance, uW cm ™2

nm™ %
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L,(z, A) upwelling radiance at depth z and wavelength A,
mWem™> nm~tsrt

water-leaving radiance, uW cm™2 nm ™! sr™1.
normalized water-leaving radiance, mW cm ™2
nm~ ! st

P phaeophytin concentration, ug L2

Rrs remote sensing reflectance, sr™ 1.
Cruises and field studies

AMT
BBOP
CalCOFI

L, (A)
Lwn(A)

Atlantic meridional transect.

Bermuda BioOptics Project.

California Cooperative Oceanic Fisheries
Investigation.

equatorial Pacific.

Joint Global Ocean Flux Study.

Marine Optical Characterization Experiment.
North Atlantic Bloom Experiment.

World Ocean Circulation Experiment.

EQPAC
JGOFS
MOCE

NABE
WOCE

Satellite ocean color sensors

CZCS
MERIS
MODIS

OCTS

POLDER

coastal zone color scanner.

medium-resolution imaging spectrometer.
moderate-resolution imaging spectroradiometer.
ocean color temperature sensor.

Polarization and Directionality of Earth
Reflectances.

SeaWiFS Sea-viewing Wide Field-of-view Sensor.
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