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Abstract. Cyanobacteria, primarily of the speci®&wodu-  (FCA below 4 %) during 1985-1990; they increased again
laria spumigenaform extensive surface accumulations in the starting in 1991 and particularly in 1999, reaching maxima
Baltic Sea in July and August, ranging from diffuse flakes toin FCA (~ 25 %) and TA ¢ 210 000 knf) in 2005 and 2008.
dense surface scums. The area of these accumulations cater 2008, FCA declined to more moderate levels (6—17 %).
reach~ 200 000 knd. We describe the compilation of a 35- The timing of the accumulations has become earlier in the
year-long time series (1979-2013) of cyanobacteria surfacseason, at a mean rate of 0.6 days per year, resulting in ap-
accumulations in the Baltic Sea using multiple satellite sen-proximately 20 days advancement during the study period.
sors. This appears to be one of the longest satellite-basetihe interannual variations in FCA are positively correlated
time series in biological oceanography. The satellite algo-with the concentration of chlorophydl during July—August
rithm is based on remote sensing reflectance of the water isampled at the depth ef 5m by a ship of opportunity, but
the red band, a measure of turbidity. Validation of the satelliteinterannual variations in FCA are more pronounced as the
algorithm using horizontal transects from a ship of opportu-coefficient of variation is over 5 times higher.

nity showed the strongest relationship with phycocyanin flu-
orescence (an indicator of cyanobacteria), followed by tur-
bidity and then by chlorophylt fluorescence. The areal frac-
tion with cyanobacteria accumulations (FCA) and the totall Introduction

accumulated area affected (TA) were used to characterize

the intensity and extent of the accumulations. The fractionThe lifetime of a typical satellite sensor is too short to col-
with cyanobacteria accumulations was calculated as the rdect quantitative interannual time series of sufficient length.
tio of the number of detected accumulations to the numbefn the era of anthropogenic climate change itis common and
of cloud-free sea-surface views per pixel during the seasodustified to look for trends in environmental variables, but
(July—August). The total accumulated area affected was calthe observed changes in relatively short time series are most
culated by adding the area of pixels where accumulation®ften due to decadal or interannual variability rather than
were detected at least once during the season. The fractid@ng-term trends. Surface or near-surface accumulations of
with cyanobacteria accumulations and TA were correlatedcyanobacteria are common in the Baltic Sea during the sum-
(R2 = 0.55) and both showed large interannual and decadalmer months of July and August. They are caused by massive
scale variations. The average FCA was significantly highelooms of diazotrophic cyanobacteria, primariipdularia

for the second half of the time series (13.8 %, 1997—2013)SPumigenzbut alsoAphanizomenosp. that aggregate near
than for the first half (8.6 %, 1979-1996). However, that doesthe surface in calm weather (Ostrém, 1976; Kononen, 1992;
not seem to represent a long-term trend but decadal-scalginni et al., 2001). Cyanobacteria blooms are considered a
oscillations. Cyanobacteria accumulations were common iffn@jor environmental problem in the Baltic Sea because of the

the 1970s and early 1980s (FCA between 11-17 %), but raré0ss of recreational value of the sea and beaches due to accu-
mulations of foul-smelling, toxic cyanobacteria, and because
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Figure 1. Cyanobacteria (primarililodularia spumigeneaccumulations in Northern Baltic Proper on 11 July 2005 as shown on MODIS-
Terra quasi true color image at 250 m resolution using bands 1 (red), 4 (green), and 3 (blue). Straight white lines are aircraft contrails.

their nitrogen fixation adds large amounts of potentially bi- al., 1998) and are the major contributor to the brightness that
ologically available nitrogen to a eutrophicated and largelymakes the accumulations visible in satellite images (Fig. 1).
nitrogen-limited sea (Horstmann, 1975; Larsson et al., 2001). Due to their temporal and spatial variability (“patchi-
While the general factors enhancing cyanobacteria bloom#iess”), cyanobacteria surface accumulations are extremely
such as availability of inorganic phosphorus, high surfacedifficult to monitor using ship-based sampling (Kutser,
temperature and strong near-surface stratification are wel2004). Their concentrations often vary by more than 2 orders
known, the specific factors determining the magnitude andof magnitude over the distance of a few meters and no suit-
distribution of the annual occurrence of these accumulationgble quantitative methods are available for reliable ground-
in different basins are still not understood and quantitativetruth measurements. Satellites sensors allow for a synoptic
assessments and models allowing prediction of the accumuiew over large spatial domains but visible and near-infrared
lations are needed. Sediment records show that cyanobactersgnsors are limited to cloud-free periods. Automated ship-
blooms have occurred in the Baltic Sea for thousands of yearborne measurements of phycocyanin fluorescence (Seppala
(Bianchi et al., 2000). Itis often assumed that their frequencyet al., 2007) and hyperspectral reflectance (Simis and Ols-
and intensity have increased due to anthropogenic eutrophison, 2013) have the potential to provide ground-truth mea-
cation (Horstmann, 1975), but such an increase has been difurements even under cloudy conditions, but are restricted to
ficult to demonstrate at the scale of the Baltic Sea, because dimited horizontal transects along shipping routes. The first
the intense patchiness and temporal variability of the bloomssatellite images of the Baltic Sea showiNgdularia accu-
as well as due to the scarcity of reliable older measurementsmulations were acquired by the Landsat multispectral scan-
(Finni et al., 2001). In order to build a time series suitable ner (MSS) in 1975 (Ostrém, 1976; Horstmann, 1983). How-
for investigating long-term trends in cyanobacterial surfaceever, due to the narrow swath width and low sampling fre-
accumulations in the Baltic Sea and the mechanisms causinguency the Landsat sensors produced only a few scenes per
them, we have used multiple satellite sensors to create thgear for the whole Baltic which was insufficient for creating
longest possible time series of comparable observations. quantitative time series. A problem affecting all satellite data
While the surface accumulations consist primarily of has been the lack of quantitative algorithms for estimating
Nodularia spumigenaother species of cyanobacteria, pri- cyanobacteria concentrations as no suitable standard satellite
marily Aphanizomenosp., often dominate in the water col- products are available. The first quantitative satellite-based
umn below (Hajdu et al., 2007; Rolff et al., 2007). These fil- time series using the broadband weather sensor Advanced
amentous cyanobacteria have gas vacuoles that they can usery High Resolution Radiometer (AVHRR) was created in
to regulate their buoyancy (Walsby, 1994). These vacuoleghe 1990s (Kahru et al., 1994) but AVHRR data had problems
are very effective backscatterers of visible light (Volten et separating cyanobacteria from other forms of turbidity or
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high surface reflectance. More sophisticated spectral methis available from the Dundee Satellite Receiving Station
ods that are specific to the pigment composition and othehttp://www.sat.dundee.ac.)kfor detecting cyanobacteria
optical characteristics of cyanobacteria have been proposede used only satellite passes near local noon (10:00-14:00
(e.g., Matthews et al., 2012) but are specific to a particu-local time), as atmospheric scattering and absorption mask
lar set of spectral bands, e.g., those on the MEdium Resothe relatively weak signal from the water surface at low sun
lution Imaging Spectrometer (MERIS) sensor that operatecelevation. While data from AVHRR sensors were transmitted
during 2003-2012. A time series based on only MERIS datadaily, due to various failures we have less than the maximum
would be too short to reveal multidecadal variability. Time number of daily AVHRR data sets during the July—August
series become more valuable the longer they become, malperiod of the early years (Table 2).
ing it essential to be able to merge data from multiple satel- Data from modern ocean color sensors are available daily
lite sensors. We have developed simple algorithms that camvith multiple passes per day and all Level-2 data files
be applied to various satellite sensors from the wide-bandrom SeaWiFS, MODIS-Aqua (MODISA), MODIS-Terra
(~100nm) and low signal-to-noise ratio (SNR) AVHRR (MODIST) and VIIRS sensors of the summer months from
sensor to modern ocean color sensors with spectrally narrowune to August were downloaded from NASA's ocean color
(~10nm) bands and high SNR. The aim of this study was toarchive fttp://oceancolor.gsfc.nasa.gpvlhe total number
create a quantitative multidecadal time series of cyanobacteosf files (Table 2) depends on the number and type of sensors.
ria accumulation characteristics in the Baltic Sea using thos&eaWiFS was the only ocean color sensor operational in the
compatible algorithms. 1998-1999 period. After that period (2000 and later) data
from multiple ocean color sensors were available simultane-
ously. SeaWiFS Level-2 data sets are distributed in a single

2 Data and methods file whereas MODISA, MODIST and VIIRS data are bro-
ken into multiple granules and therefore the number of files
2.1 Satellite data is higher. Between 2005 and 2010 SeaWiFS data were only

available at the low (4 km) resolution (GAC) mode and were

A summary of the various satellite sensors that have beemot used. We combine multiple satellite passes and multi-
used to detect cyanobacteria from space is in Table 1ple files per day and show the number of days in the July—
The first ocean color sensor Coastal Zone Color ScanAugust period with useable data (“N of valid days”) in Ta-
ner (CZCS) (Hovis et al., 1980) was an experimental sen-ble 2. Scenes that were completely cloudy or produced no
sor operated by NASA during 1978-1986 and was turnedvalid water surface data were excluded.
on only intermittently due to its limited recording capac- While the MODIS sensors on Terra and Aqua have bands
ity. A reasonable number of CZCS scenes from the Balticwith 250 m and 500 m resolution (e.g., Fig. 1), these bands
Sea are available for the July—August season during 19794ypically have lower signal-to-noise ratios. For compatibil-
1984 (Table 2). Coastal Zone Color Scanner data weraty between different sensors, all satellite data used in the
downloaded as Level-2 files from NASA's ocean color web quantitative analysis in this work had approximately 1km
(http://oceancolor.gsfc.nasa.gpv/ spatial resolution. All satellite data were registered to a stan-

A broadband weather sensor, named Advanced Very Higtdard equal area map with an Albers conic projection with
Resolution Radiometer (AVHRR), has been flown on a se-1 kn¥ pixel size (Fig. 2). Since cyanobacteria blooms are not
ries of NOAA polar orbiting satellites and data since 1979 known to occur in the Bothnian Bay, this northernmost part
are available (Kidwell, 1995). The advantages of AVHRR of the Baltic Sea was excluded from all maps and calcula-
are its wide swath (over 2000 km), frequent coverage (up taions. Coastal zones shallower than 30 m and other turbid ar-
several passes per day), and availability over a long periogas were also excluded (more below).
of time. However, compared to specialized ocean color sen- While there is better data coverage from 1998 and onwards
sors, AVHRR has only two broadband spectral channels in(Fig. 3), even the approximately 40-50 days of combined
the visible (0.58—0.68 um) and near infrared (0.72—-1.10 um)AVHRR and CZCS coverage in the early years of 1979-1986
ranges with low sensitivity and poor calibration accuracy. are sufficient for quantitative seasonal estimates as the accu-
This makes atmospheric correction difficult and limits its ca- mulations are relatively consistent from day to day. The de-
pability to distinguish algal blooms near and at the surfacetected total area approaches a plateau after about one satel-
from suspended sediments, certain types of clouds as wellte image per bloom day (Fig. 3.9 in Kahru, 1997), and the
as bottom reflection in shallow areas. In spite of these limi-fraction of cyanobacteria accumulations (details below) are
tations, AVHRR data has been used to detect highly reflechormalized to the number of clear (valid) viewings.
tive blooms such as coccolithophores (Groom and Holligan,
1987) and cyanobacteria in the Baltic (Kahru et al., 1993,
1994, 2000; Kahru, 1997). We used AVHRR data recorded
at multiple locations, including Stockholm University. The
most complete archive of AVHRR over Europe since 1979
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Table 1. Characteristics of satellite sensors used to detect cyanobacteria accumulations in the Baltic Sea.

Sensor Satellite Agency Center wavelength Spatial, Temporal resolution,  Signal-to-noise ratio
of the red band resolution resolution of the red
(width) nm, m days band
MSS Landsat 2 (ERTS-B) NASA/USGS 650 (100) 83 18 40
™ Landsat 5 NASA/USGS 660 (60) 30 16 50
CzCs Nimbus-7 NASA 670 (20) 825 irregular 100
AVHRR  NOAA-X NOAA 630 (100) 1100 <1 3
SeaWiFS Orbview-2 NASA 670 (20) 1100 ~2 390
MODIS  Terra NASA 667 (10) 250/500/1000 ~2 910
MODIS  Aqua NASA 667 (10) 250/500/1000 ~2 910
MERIS ENVISAT ESA 665 (10) 300/1200 ~3 883
VIIRS NPP NOAA/NASA 671 (20) 370/740 ~2 750

2.2 Methods of detecting cyanobacteria accumulations
221 AVHRR

The low sensitivity and poor calibration accuracy of
AVHRR'’s two broadband spectral channels make accurate
atmospheric correction difficult. Even with the best avail-
able calibration coefficients, atmospheric correction often re-
sulted in physically impossible negative values of the water-

Figure 2. Study areas in the Baltic Se@d) The area considered leaving radiance (Stumpf and Fryer, 1997). We therefore
(grey) in mapping cyanobacteria blooms excludes near-shore ared4€d the standard AVHRR band 1 albedo (Kidwell, 1995)
with potentially high turbidity (white, 19.5 % of the total sea area). t0 detect cyanobacteria. The supervised classification algo-
(B) Partition into nine separate basins: Bothnian Sea (BS, 1), Gulf offithm as applied to AVHRR data has been described previ-
Finland (GF, 2), Gulf of Riga (GR, 3), Northern Baltic Proper (NBP, ously (Kahru et al., 1994; Kahru, 1997). The range of band
4), Western Gotland Basin (WGB, 5), Eastern Gotland Basin (EGB,1 albedo of the accumulations was determined empirically
6), south-southwestern Baltic Proper (SWBP, 7), south-southeasterand varied between 2.3 and 4 %, with lower values classi-
Baltic Proper (SEBP, 8), Bay of Gdansk (BG, 9); Kahru etal., 2007.fied as water and higher values as clouds. However, these
values were used as guidance and had to be empirically ad-
justed for some scenes. The surface distribution of cyanobac-
teria accumulations has a very characteristic spatial texture

60 T N EEIEIE TR and patterns of swirls, eddies and filaments (Fig. 1) that are
so [ {HHHHHHETHHH useful in separating the accumulations from clouds, fog and
aircraft contrails. Areas with such high spatial texture were

considered cyanobacteria accumulations. Multiple threshold-
ings and differences in the visible, near infrared and ther-
H mal channels were used to eliminate pixel areas with similar
albedo. Data in the near-infrared band 2 and the two ther-
mal infrared bands, 4 (10.4-11.0 um) and 5 (11.6-12.2 um),
were used to screen clouds, haze, land and error pixels. Pix-
the July—August seasons of 1979—2013. Column height shows theIS with band 2 albedo values exce(?(_ding the Correspondi_ng
. . o S MBand 1 albedo by 0.2% were classified as land or consid-
total number of daily data sets with valid ocean data, the red filled : . .
part shows the number of daily data sets with detected accumula‘-ared an error. Pixels W'th band 4 and band 5 dlﬁergnces
tions. greater than 2C were designated as clouds. Finally, visual
inspection and editing were used to eliminate pixels erro-
neously marked as accumulations due to variable clouds and
sediment-rich coastal areas. As cyanobacteria accumulations
are usually present in the same location for more than one
day, while clouds and other atmospheric effects are more
transient, sequences of images were checked for consistency
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Figure 3. Number of daily satellite data sets used in the analysis of
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Table 2.Number and type of daily detected (“turbid”) and useable (“valid”) satellite data sets, mean fraction of cyanobacteria accumulations
(FCA %), total area covered by accumulations (TA) over the Baltic Sea during the July—August period, and the sensors used in the analysis.
For each sensor the number of daily scenes is given in brackets or the combined number of scenes for ocean color sensors.

Year Nof Nof FCA% TA, Sensor

turbid  valid 1000
days days krf

1979 17 40 11.2 57 CZCS, AVHRR
1980 23 54 11.7 59 CZCS, AVHRR
1981 17 39 16.8 91 CZCS, AVHRR
1982 21 42 12.9 69 CZCS, AVHRR
1983 27 47 12.3 78 CZCS, AVHRR
1984 13 39 17.0 86 CZCS, AVHRR
1985 9 41 1.1 3 AVHRR
1986 11 47 3.3 14 AVHRR
1987 2 61 0.4 1 AVHRR
1988 7 61 2.1 8 AVHRR
1989 16 56 3.9 23  AVHRR
1990 16 61 3.8 26 AVHRR
1991 19 60 10.2 74 AVHRR
1992 20 60 13.1 60 AVHRR
1993 14 61 6.9 39 AVHRR
1994 21 46 14.3 103 AVHRR
1995 24 60 4.3 40 AVHRR
1996 22 61 2.3 21 AVHRR
1997 35 62 16.0 127 AVHRR
1998 48 62 5.9 129 SeaWiFS, AVHRR
1999 55 62 21.6 209 SeaWiFs, AVHRR
2000 59 62 13.1 178 SeaWiFS, MODIST
2001 55 62 12.4 139 SeaWiFS, MODIST
2002 59 62 14.5 176 SeaWiFS, MODISA, MODIST
2003 59 62 17.9 176 SeaWiFS, MODISA, MODIST
2004 59 62 9.5 155 SeaWiFS, MODISA, MODIST
2005 58 62 25.0 183 MODISA, MODIST
2006 60 62 14.8 174 MODISA, MODIST
2007 56 62 7.1 110 MODISA, MODIST
2008 57 62 25.5 212 MODISA, MODIST
2009 54 62 6.1 160 MODISA, MODIST
2010 55 62 10.7 143 MODISA, MODIST
2011 61 62 16.5 186 MODISA, MODIST
2012 61 62 9.1 155 MODISA, MODIST, VIIRS
2013 62 62 11.1 165 MODISA, MODIST, VIIRS

1979—  Total Total Mean Mean
2013 1252 1990 11.0 104

of the detected accumulations over several images and sugquivocally separate isolated accumulations from certain thin
pected classification errors were manually deleted. Wherclouds, floating pine pollen or suspended sediments in shal-
some of the AVHRR data were reprocessed during 2012-ow areas or near the coast, large-scale cyanobacteria accu-
2013 for comparing with modern ocean color data, the testsnulations, particularly those ®fodularia, mainly occur off-
involving infrared bands 4 and 5 were skipped as it was deshore (e.g., Wasmund, 1997), away from the coast and are
termined that these tests did not contribute much to the outelearly detected. Near-shore areas with depths less than 30m
come. This simplification did not make a significant differ- and with frequent turbidity were eliminated using a fixed
ence as valid ocean areas were still determined as band rhap (Fig. 2) as reliable separation of accumulations from
albedo less than 4% and the cyanobacteria accumulationsther forms of turbidity was not possible in coastal areas. A
were determined visually by their high reflectance and charsample AVHRR image showing extensive cyanobacteria ac-
acteristic spatial patterns. While these methods cannot uneumulations in band 1 albedo and the corresponding maps of
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15 17 19 21 23

Figure 4. Example of cyanobacteria detection on AVHRR imagery Figure 6. Example of cyanobacteria detection on MODIS-Terra im-
of central Baltic Sea on 10 July 200&\) Grayscale image of band agery of central Baltic Sea on 11 July 2005) Quasi true-color im-

1 albedo (bright tones correspond to higher albedo, dark tones tage using bands 1 (red), 3 (blue), 4 (gre€B).Detected cyanobac-
lower albedo)(B) Detected cyanobacteria accumulations (black). teria accumulations (black]C) Valid ocean areas (pink).

(C) Valid ocean areas (blue).

WIFS, MODISA, MODIST and VIIRS as well as the early
CZCS were essentially the same as described in Kahru et
al. (2007). After the 2009 reprocessing, the standard NASA
ocean color output is expressed as remote sensing reflectance
(Rry) instead of the formerly used normalized water-leaving
radiance iLw). The conversion betweeRrs and nLw is
straightforward:nLw (1) = solar_irradianceX) x Rrs (1).
The semi-automated method of detection of cyanobacteria
accumulations is based on high reflectance of the approxi-
mately 670 nm bandRrs667for MODISA and MODIST,
Rrs670for SeaWiFSRrs67Ifor VIIRS). Thresholding of the
Rrsof the red band is part of the standard NASA Level-2 pro-
cessing and the Level-2 flag TURBIDW (“turbid water”) is
15 17 19 21 23 . set if Rrs670> 0.012sr?! (http://oceancolor.gsfc.nasa.gov/
VALIDATION/flags.html). This condition is required but not
Figure 5. Example of cyanobacteria detection on MODIS-Aqua syfficient for a pixel to be classified as an accumulation
imagery of central Baltic Sea on 10 July 20G8) Quasi true-  nive| High reflectance in the 670nm band is caused by
color image using bands 1 (red), 3 (blue), 4 (green). Small cloudsgy 5y packscatter of particles that are either in the water
(bright white) can be seen over both land and the @gDetected .\, haar the surface or directly at the surface (surface
cyanobacteria accumilations (blactg) Valid ocean areas (pink). scum). Both near-surface and surface backscattering is in-
dicative of high cyanobacteria concentrations. High water

detected accumulations as well as valid ocean area are shofflectance at 670nm can also be caused by various other
in Fig. 4. A comparison of detecting the same accumulationg@rticles in the water column, i.e., turbidity, such as organic
(10 July and 11 July 2005) with the more accurate ocearﬁ”d inorganic particles in river runoff or re—suspe_nded par-
color imagery (MODIS-Aqua and MODIS-Terra) is shown ticles from the bottom, or by other particles floating at the

in Figs. 5 and 6. surface (such as pine pollen). However, such other causes of
turbidity or high backscattering are rare in the open Baltic
2.2.2 Ocean color sensors Sea in July and August. Coastal zones and shallow areas of

known high reflectance are excluded by using a spatial mask
The detection of cyanobacteria accumulations in the oper{Fig. 2). For detecting cyanobacteria accumulations we also
Baltic Sea is based on the assumption that highly reflectiveequire that the flag MAXAERITER (maximum aerosol it-
areas with a characteristic spatial structure occurring duringeration) is off as this flag is set if there is a problem in at-
July—August are caused by accumulations of cyanobacterianospheric correction that often occurs near cloud edges. Us-
The methods applied to ocean color sensors such as Seag the MAXAERITER flag eliminates many false positives.

Biogeosciences, 11, 3619633 2014 www.biogeosciences.net/11/3619/2014/
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A pixel is classified as a valid ocean pixel only if none of o0& — 5
the following flags are set: ATMFAIL, LAND, HIGLINT, R?=0.96 e
HILT, HISATZEN, STRAYLIGHT, CLDICE, HISOLZEN,
LOWLW, CHLFAIL, MAXAERITER and ATMWARN. The
primary flag here is CLDICE, which indicates high re-
flectance due to clouds as ice is not possible in the July-
August imagery. A pixel is classified as an accumulation if oo &% o o o 000 020 oso  oso 080
(1) itis a valid ocean pixel and (2) if it has the high turbidity FCA, MODIS-Terra FCA, MODIS-Terra

vs]

y=1.04x + 0.00

o
e
o

o
IS

0.4

FCA, SeaWiFS
o
FCA, MODIS-Aqua

o
N

flag set. All Level-2 (i.e., data processed to remote sensingc®® | y-osox+ o001

R?=0.94

reflectance but unmapped) satellite passes are visually evalt °*
ating using images drrs555(SeaWiFS) oRrs547(MOD-
ISA and MODIST) orRrs551(VIIRS). Atmospheric correc-
tion failure sometimes occurred in the middle of the denses’ o
cyanobacteria accumulations and was caused by dense st oo &
face scum. These areas in the middle of accumulations wer ~ °% ©© 22 039 040 050 00 01 02 03 04 05 06 07 08
. iy - . . ’ FCA, SeaWiFS + MODISA + MODIST
clearly identifiable and were manually filled with the turbid
water class. They always represented a smab %) frac- Figure 7. FCA derived with one sensor versus FCA derived with
tion of the total area of detected accumulations. another sensor in nine areas of the Bal(it) SeaWiFS versus
Sometimes turbid plumes originating from the coast canMODIST, N = 135, June—August 2000-200) MODISA ver-
extend into the Baltic Sea area used in our calculations, i.e.$us MODIST,N = 243, June-August 2002-201&) VIIRS ver-
outside of the coastal zone that is eliminated from the analySus MODIST.N = 54, June-August 2012-201(®) AVHRR ver-
sis. These plumes are almost always clearly originating fromPus SeaWiFs (1998, 1999), MODISA (2005) and MODIST (2000,
the coast and have been eliminated by visual inspection200): N =108. The dotted line is the one-to-one line and the
L . olid line is the estimated linear regression line. For AVHRR the
Some manual elimination of false positives was also needed . 15
. . . power function FCA = 0.85x FCA™* was used to convert FGA
for SeaWiFS data, particularly along cloud edges. SeaWiF o ECA.
data have lower signal-to-noise ratio than MODIS data and
therefore higher levels of noise variance (Hu et al., 2013).
Some areas, e.g., the Bay of Gdansk and the Gulf of Riga,
are often turbid (e.g., Liblik and Lips, 2011) and the detec-of valid and turbid classes were accumulated over five-day,
tion of cyanobacteria accumulations there is sometimes amene-month and two-month periods. From these counts the
biguous. However, obvious cyanobacteria accumulations irfraction of cyanobacteria accumulations (FCA) was calcu-
these areas are distinguishable by their spatial structure. Ifated as the ratio of the number of courtigturbid)/N(valid).
these areas accumulations were confirmed only if the adThe fraction of cyanobacteria accumulations shows the frac-
jacent areas also showed accumulations. A comparison dion of days when cyanobacteria accumulation was detected
the results of applying the algorithms described in this secper cloud-free daily measurements. Another metric that has
tion to 10-11 July 2005 images of MODISA and MODIST been used in the past, the total area (TA) or cumulative area,
(Figs. 5, 6) shows good agreement between those two as wedhows the total area where accumulations were detected at
as AVHRR (Fig. 4). The CZCS was less sensitive than SeaWieast once during the whole season (June—August). As the
iFS and MODIS, and the TURBIDW flag was almost never area of each pixel in our standard map is 2ki¥A in km? is
set for valid ocean pixels. We therefore used the high re-equivalent to the number of detected turbid pixels in the over-
flectance determined ag.w555> 0.8 mW cnt2 pmtsr1 all (seasonal) composite of turbid aredmdularia blooms
with characteristic spatial patterns to detect likely cyanobacproducing surface accumulations typically occur from the

FCA, VIIRS
o' ©
[

teria accumulations. end of June to the end of August (Kononen, 1992; Kahru
et al., 1994; Wasmund, 1997). The monthly mean FCA for
2.3 Routine processing of satellite data June is normally very low. We therefore used the July to Au-

gust mean FCA as the indicator of the annual intensity of the
Multiple satellite passes (Level-2 unmapped data sets) thaaccumulations.
were classified into valid ocean and turbid classes were reg- A total of 1990 daily data sets (Table 2), typically merged
istered to a standard map with an Albers conic equal area prafrom multiple sensors, were used over the July—August pe-
jection with a 1 kmi pixel size (Fig. 2) and composited into riod of 1979-2013 which makes an average of over 57 days
daily maps of valid ocean and turbid ocean classes. Thoseer year (out of the maximum of 62 days per July—August).
daily maps from individual satellite sensors were then com-The number of individual scenes per day could be further in-
posited into merged daily maps of valid and turbid classescreased by using the 10 years of MERIS data (2002-2011
Obviously, a pixel needs to be a valid ocean pixel in order tofor the July—August period) and the full-resolution SeaWiFS
be classified as a turbid ocean pixel. For each pixel the countdata for 2005-2010. However, these data will not increase
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the number of daily valid data sets as these years are already Considering the highly variable nature of the accumula-

well covered by other sensors. tions and the variable orbits covering the Baltic Sea at dif-
ferent times of the day, we concluded that the differences

2.4 Comparison between the outputs of different between FCA values obtained by different ocean color sen-
sensors sors were insignificant and therefore the results of individual

sensors could be merged to estimate FCA.

Satellite sensors differ in overpass times, orbits and swath Larger differences in FCA are expected when comparing
widths, view and solar angles, as well as spectral bands anthe “new” ocean color sensors with the “old” and less ac-
sensitivities (e.g., signal-to-noise ratio, SNR). Their sensitiv-curate AVHRR sensor. Due to its lower sensitivity, AVHRR
ity can change over time and NASA therefore continuouslyis expected to be less effective in detecting accumulations
monitors, and intermittently recalibrates and reprocesses alihat are small or barely above the detection limit of the more
previously collected data. Variations between FCA of differ- sensitive ocean color sensors. We compared FCAs from the
ent sensors are therefore to be expected, particularly due tBVHRR on NOAA satellites (FCA) with FCAs from Sea-
differences in overpass times and in the surface areas obBAIFS (1998, 1998), MODISA (2005) and MODIST (2000,
scured by clouds. In order to evaluate the errors and variabil2005) in nine areas of the Baltic in July and August. The
ity of our FCA estimates, we compared the mean monthlyoverall linear regression between FGAnd FCA has ami?
FCAs obtained by multiple simultaneous sensors in nine dif-of 0.82, which increased to 0.94 when excluding the often
ferent areas of the Baltic Sea (Fig. 2). Larger random variaturbid areas of Gdansk Bay, Gulf of Riga and eastern Gulf
tions are expected for smaller areas, e.g., the Bay of Gdanskf Finland where detection is often ambiguous. An under-

SeaWiFS, MODIST, MODISA and VIIRS have all over- estimation by FC4 is particularly evident at low FCA lev-
lapped temporally with at least one other sensor. We useels. We approximated this relationship with a power func-
FCA obtained from MODIST (FCA) as the common ordi- tion FCAy = 0.95x FCAL® which models the lower detec-
nate variable in comparisons with all other sensors (Fig. 7)tion efficiency at low FCA and the relatively good detec-
The results showed that FCA values obtained with tempo-tion efficiency at high FCA. It appeared that the dense and
rally overlapping ocean color sensors (SeaWiFS, MODIST, large-scale accumulations were well detected by AVHRR,
MODISA and VIIRS) were all highly correlateck€ ~0.94—  and it produced FCA values that are only slightly lower than
0.96) and had a linear regression with an intercept that wagCAs determined simultaneously with ocean color sensors
not significantly different from zero and a slope that was (Fig. 7d). We then used the inversion of the power function
close to 1.0. These conclusions were also confirmed sepae convert FCA to FCA. We concluded that after applying
rately for individual years when FCA could be compared for the conversion, FCA determined with AVHRR was compa-
two sensors. The only exception was year 2011 when+CA rable to FCA determined with other sensors, particularly for
was approximately 1.3 times higher than FCA obtained withthe intense and large-scale accumulations that mattered most
MODISA (FCAT = 1.316 x FCAa + 0.0015, R2 = 0.9413, in detecting the interannual variability.
N = 27). The reason for this anomaly is not clear but it is
possible that the slightly higher FGAwas caused by the 2.5 Horizontal transects measured on ships of
higher noise level and less accurate calibration of MODIST. opportunity
Another factor that may influence the difference between
sensors is the overpass time. The MODIS-Terra overpass waSor validating the daily images of satellite-detected
at approximately 10:30LT and the MODIS-Aqua overpasscyanobacteria accumulations we used horizontal transects
at approximately 13:30 LT. During calm weather it might be obtained from the Algaline (Rantajarvi, 2003) ships of op-
expected that more accumulations would develop by the afportunity instrumented with a system measuring, among oth-
ternoon, but currently we have not confirmed any system-ers, chlorophylla (Chl @) fluorescence, phycocyanin (PC)
atic influence of the overpass time on FCA. The fraction fluorescence and turbidity (Seppala et al., 2007). The flow-
of cyanobacteria accumulations derived with the new VIIRSthrough instrument system was installed on a ferryboat com-
sensor corresponds well to FCA derived with the other senmuting between Helsinki (Finland) and Travemiinde (Ger-
sors for the two years (2012 and 2013) available for comparmany) and sampled from flow-through water pumped from
ison (Fig. 7c). approximately 5m depth. For this analysis we used data

The error of the monthly FCA as determined by a satellitecollected during 15 transects in July 2010 and provided by
sensor can be estimated as (1) the mean absolute differende Seppala (Finnish Environment Institute, SYKE). The mea-
and (2) the median absolute difference between FCA valuesured relative voltages of PC fluorescence, @Hluores-
of different sensors. For MODISA, MODIST and VIIRS, the cence and turbidity were normalized between the respective
mean absolute differences were 1.1-1.9 % FCA and the meminima and maxima and converted to a scale from 0-100.
dian absolute differences were between 0.4 and 0.6 % FCAFor each ship measurement, the nearest satellite pixel was
For SeaWiFS, the respective errors were slightly higher (2.0found in the corresponding daily merged image of detected
and 1.1% FCA, respectively). accumulations, and valid pixels were averaged in the55

Biogeosciences, 11, 3619633 2014 www.biogeosciences.net/11/3619/2014/



M. Kahru and R. ElImgren: Satellite detection of multidecadal time series 3627

pixel neighborhood centered at the nearest satellite pixelequation:
A pixel with detected accumulation was assumed to have a
value of 1 and a valid pixel with no detected accumulation to p —
have a value of 0. This averaging was performed to compen-

sate for the possible advection of the accumulations duringyse sed the Newton—Raphson method of iteratively finding
the temporal shift between satellite passes and ship measurgye pest fit as implemented in the NMath numerical libraries

ments (up to 24 h). (http://www.centerspace.npt/As in linear regression, we
were interested in finding the best model of a predictor vari-
able to help explain the binary output. It turned out that all

1
1+ e—(a+bX) : (1)

3 Results three predictor variables were significantly related to the de-
o ] . . tected cyanobacteria but the strongest relationship was with

3.1 Validation of satellite detection of cyanobacteria PC fluorescence, followed by turbidity and then by @fil-
accumulations with horizontal transects measured  grescence. All estimates of the goodness-of-fit (G-statistic,
on ships of opportunity Pearson statistic, Hosmer—Lemeshow statistic) showed sig-

) ) ) nificant relationships at the 0.05 level of significance. The
Figure 8 shows a comparison between four ship transecty, ameters of the logistic regression were not constant from
of phycocyanin (PC) fluorescence and satellite detectionyansect 1o transect. That was expected as the voltages were
of cyanobacteria accumulations on single day images Mot calibrated in absolute concentrations, but it was mostly
July 2010. The accumulations started to be detectable in thg, ¢ ¢ the variable relationships between surface-detected ac-
beginning of July in the Bay of Gdansk (nearBlongi- ¢ mylations and the vertical distribution of cyanobacteria in

tude), and the narrow patches of accumulations were lineghq \ater column (Groetsch et al., 2012). For a typical tran-

up very well on both the ship transect and on the satel-gect (15 July 2010) the logistic regression parameters with

lite map (Fig. 8a-b). By July 10, the accumulations were pc fj,orescence were: intercept 2.79 (0.05 confidence inter-
widespread both in the Northern and Southern Baltic Propeq, t5 2 61-2.96) and slope 0.083 (0.05 confidence interval
(Fig. 8c—d). The narrow tongue of accumulations just outsidey 576_0.090). Probability curves of the accumulations for the
of the Bay of Gdansk was well detected by both measurey,| ranges of predictor variables (Fig. 9) show that detected
ments. In the southwestern Baltic, the band of increased PGy anobacteria accumulations were most sensitive to PC fluo-
fluorescence (14-1%) was associated with a few scattered, rogcence and somewhat less to turbidity. The effect ofChl

detected pixels of accumulations and the corresponding avelyorescence had a much weaker effect and the relationship
age cyanobacteria score was therefore relatively low. On 12, - ¢ |ass tight.

and 20 July, massive accumulations covered both Northern

and Southern Baltic Proper, but the ship track was not op3.2  Timing of the accumulations

timal for detecting particularly the southern accumulations.

The ship transects on 12 July (west of the island of Got-Figure 10 shows the monthly FCA of the months of June,
land, Fig. 8e—f) and on 20 July (east of Gotland, Fig. 8g—July and August for the period when most accurate coverage
h) were both along the edge of the major area of accumulaexists (during 1998—-2012). While the first accumulations of-
tions in the Southern Baltic Proper, and that probably causeden appear in June, the mean monthly FCA for June is always
a large part of the variability in the average cyanobacteriavery low. In some years (2002, 2003, 2005, 2006, 2008, 2010
score there. Narrow strips of increased PC fluorescence coand 2013) the July FCA is much higher than that of August
responded well to detected cyanobacteria, but we could nowhereas in other years (1998, 2007, 2011 and 2012) July and
detect a common threshold of PC fluorescence above whiclhugust have similar FCA. The highest FCAs were recorded
the surface accumulations could be detected by our satein periods of warm and sunny weather. As the monthly pe-
lite algorithm. That was expected as the correspondence beiod of compositing is too long to discover smaller tempo-
tween ship measurements at 5 m depth and satellite measureal changes, we made 5-day composited FCA for each pixel.
ments of the surface layer depends on the vertical distribuAnalogously to the calculation of the center of gravity, we
tion of cyanobacteria and the depth of the top layer withincalculated the “center of timing”. For each year and each
which the cyanobacteria flakes (aggregates of filaments) arpixel we estimateds = ) (dayx FCA) and F = ) FCA,
distributed. As our output variable, i.e., the presence or abwhere day is the middle day-of-year of the 5-day period and
sence of accumulation in the satellite pixel nearest to theFCA is the 5-day FCA of a pixel. The center of timing was
ship measurement, was binary=£laccumulations detected; defined as;/F and represents the temporal center of the ac-
0 =accumulations not detected), we used the logistic regreseumulations in days-of-year. For an individual pixel the an-
sion to model the relationship between predictor variablesnual center of timing can be quite variable. We therefore used
such as PC fluorescence, Ghiluorescence or turbidity and the median for a larger area of pixels, e.g., the whole Baltic
the binary response variable. Best fits of the two parameSea or any of the nine sub-areas (Fig. 2). Figure 11a shows
ters, intercept (a) and slope (b), were found for the followingthe median of the center of timing for the whole Baltic Sea
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Figure 9. Probability of surface cyanobacteria accumulations esti-
mated with the logistic regression as a function of phycocyanin fluo-
rescence (PCFL), turbidity (Turb) and Ghfluorescence (CHLFL)
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Figure 8. Comparison between ship transects of phycocyanin (PC)Figure 10. Monthly mean FCA in June, July and August for the
fluorescence (left panels) and satellite detection of cyanobacteri®altic Sea based on ocean color satellite data in 1998-2013.
accumulations (right panels) in July 2010. Along-transect PC fluo-

rescence (red, relative scale from 0-100) is shown together with the
corresponding satellite mean score for accumulations in te&5 ~ Period and the trend towards earlier occurrence is also visi-

pixel window centered at the nearest pixel (black squares). Satelble there (Fig. 11b). The interannual variations in the timing
lite maps show detected accumulations (black), valid areas with n@f the accumulations in individual areas are typically coher-
detected accumulations (gray), missing data due to clouds (whitegnt over the whole Baltic Sea. Accumulations in the Both-
and the ship track (red linefa, B) 3 July;(C, D) 10 July;(D, F) nian Sea typically occur in August, and are on average about
12 July;(G, H) 20 July. 20 days later than in the Northern Baltic Proper (Fig. 11b).
No accumulations were detected in the Bothnian Sea during

) ) ) - 1991-1996 but they have occurred annually after that.
during 1979-2013. In spite of the strong interannual vari-

ability a significant ¢ < 0.001) trend towards earlier occur- 3.3  Time series of the mean July—August FCA

rence can be detected. The mean trend is approximately 0.6

days per year or 6 days per decade. This means that over thkhe daily data sets of the turbid and valid classes were com-
35-year observation period the center of timing in the Baltic posited into annual two month (July—August) counts, and
Sea has become 20 days earlier. The mean center of timinthe respective cyanobacteria fractions (FCA) were calculated
has therefore changed from approximately 8 August (day-of{Table 2 and Fig. 12). It appears that the mean FCA of the
year 220) to 19 July (day-of-year 200). The trend in center ofBaltic Sea is well correlatedr? = 0.55) with the total area
timing can be estimated also in each of the nine sub-areagTA, km?) of the accumulations. The average FCA for the
but the interpretation is less obvious as some years may natecond half of the time series (1997-2013, 13.8 %) was sig-
have any accumulations. The Northern Baltic Proper and thanificantly (P < 0.01) higher than that during the first half
Eastern Gotland Basin (sub-areas 4 and 6) are the only sul{1979-1996, 8.6 %) but that does not seem to represent a
areas with at least some accumulations for the whole 35-yeaiemporal trend. Instead, it is suggestive of a wave-like pattern
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A o also in 2013. High values of EOF 1 (years 1999, 2005 and
5 22 A g TosseenmE 2008) show high FCA along the eastern side of the Baltic
: %;Aﬁ% AL Sea. These years also coincide with years of overall high
H 200 ¢ SR e o FCA in the Baltic Sea (Fig. 12). Low values of the respec-

180 tive EOF loadings show the opposite patterns. For example,
160 years 2003 and 2011 with low EOF 2 loadings have low FCA
3888888288388 88¢8¢8 8 in the southwestern Balltic.

B 240 0 g
5 220 - R AR o Ao Roo® «°%7. 4 Discussion
s T P e
S 10 v 4.1 Methods of detecting cyanobacteria accumulations

160

Surface accumulations of cyanobacteria are a conspicuous
natural phenomenon in the Baltic Sea and are commonly ob-
Figure 11. Temporal changes in the center of timing of the occur- S€rved from ships, aircraft and earth-sensing satellites. The
rence of cyanobacteria accumulations (median of the ag&pjhe earliest report of a surface accumulation identifiedNaslu-
whole Baltic Sea(B) Northern Baltic Proper (circles connected by laria in the Baltic seems to be from the summer of 1901,
solid black line) and Bothnian Sea (gray squares). Red line is theobserved from a ship in the southern Baltic (Apstein, 1902),
estimated linear regression for the whole Ba(h) or the North-  j.e., over 110 years ago. The first scientific satellite observa-
ern Baltic Prope(B). 1 July is day-of-year 182 (day-of-year 183 on tjon of aNodulariaaccumulation was made in 1973 (Ostrém,
leap years), day-of-year 200 is 18 July (19 July on leapyear). 1976, possibly the very first application of satellite technol-
ogy in biological oceanography. While anecdotal observa-
tions of cyanobacteria accumulations in the Baltic are com-
with frequent cyanobacteria accumulations in the late 1970snon, quantitative time series are difficult to obtain. For ex-
and early 1980s (FCA 5-10 %), low FCA or almost no ac- ample, the sampling frequencies of official oceanographic
cumulations during 1985-1990, and an increase starting irmonitoring programs are typically too coarse in space and
1991. Another short minimum in FCA occurred in 1995- time to create reliable time series (e.g., Finni et al., 2001).
1996. A significant increase started again in 1997. It shouldSatellite sensors often provide visually stunning imagery but
be noticed that the significant increase in FCA started ongyuantitative time series are hard to compile. Moreover, time
year before the start of the availability of ocean color dataseries generated from one satellite sensor are not necessarily
in 1998 and that the high FCA during the years of availablecompatible with time series generated from another satellite
high-quality data is coincidental. All-time maxima in FCA sensor (e.g., Gregg et al., 2009). The lifetime of a typical
and TA occurred in 2005 and 2008 and after 2008 the trendsatellite sensor is too short to collect quantitative interannual

2005
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1993
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1999
2001
2003 1

1979

1981 ]
1983

1985 1
1987 T
1989 1
1991 1

has been downward. time series of sufficient length. We therefore used multiple
satellite sensors and included both the old and new data sets.
3.4 Spatial patterns in FCA Several algorithms using spectral bands in the red and the

“red edge” portion of the near-infrared spectrum can be ap-
The spatial patterns in the annual July—August FCA (Fig. 13)plied to MERIS data for the detection of cyanobacteria, e.g.,
show strong year-to-year variability in the locations of areasthe fluorescent line height (FLH; Gower et al., 1999), the
with high occurrence of accumulations. For example, in 2001maximum chlorophyll index (MCI; Gower et al., 2006), the
and 2006 high FCA was predominantly in the southwesterncyanobacteria index (Cl; Wynne et al., 2008) and the maxi-
Baltic Sea whereas in 2007 FCA was low in the southwest-mum peak height (MPH; Matthews et al., 2012). Hyperspec-
ern Baltic and high in the northeastern Baltic and the Gulftral sensors, e.g., HICO (Lucke et al., 2011), have even more
of Finland. These patterns can be objectively decomposegotential in creating algorithms that are specific to particu-
into empirical orthogonal functions (EOF) and their load- lar features in the absorption, fluorescence or backscattering
ings. The dominant EOF show the dominant distribution pat-spectra of cyanobacteria. While these algorithms are poten-
terns. The most dominant mode (EOF 1) explains 38 % oftially more accurate for separating cyanobacteria from other
the total variability and has high FCA in the eastern Baltic types of algae and other substances in the water, they are
from north to south (Fig. 14a). The second mode (EOF 2)specific to the band sets of particular sensors (e.g., MERIS).
explains 18 % of the total variability and has high FCA in Therefore those algorithms cannot be extended backwards to
the southwestern Baltic (Fig. 14b). Time series of the load-the early sensors. We therefore did not attempt to use these
ings of EOF (Fig. 14c) show years when these modes werespectral methods of detecting cyanobacteria. An important
either high or low. For example, southwestern accumulationdactor in the application of these spectral algorithms is that
were dominant (high EOF 2) in the years 2001 and 2006 andhe optical characteristics of cyanobacteria accumulations are
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Figure 12. Mean FCA (%) for the July—August period in the Baltic Sea (solid black circle, left axis) and the corresponding total area (TA,
km?; rectangle, dashed line) of the accumulations (corresponding numerical data in Table 2).

very sensitive to their vertical distribution. As water absorbsple can easily miss the high cyanobacteria concentration in
strongly in the red part of the spectrum, it makes a drastica plume floating nearby (e.g., Finni et al., 2001) and the
difference to the reflectance spectrum if the accumulationsmean error for the more stable chlorophylconcentration
extend slightly above the water surface (i.e., surface scumhas been estimated to bel100% due to temporal alias-

or are submerged just under the air-water interface. A suding and another- 100 % due spatial heterogeneity (Kahru
den increase in wind speed can quickly change the verticahnd Aitsam, 1985). Higher temporal and spatial frequency is
structure of the accumulations, mix the accumulations in theprovided by programs like Algaline (Rantajarvi, 2003) us-
upper few meters and drastically change the output of algoing ships of opportunity. However, the Chlin vivo fluo-
rithms that are too sensitive to the vertical distribution of the rescence that is often used as a measure of phytoplankton
accumulations. For example, the normalized vegetation inbiomass is a poor measure of the abundance of cyanobac-
dex (NDVI) that is being used to detect land vegetation canteria as most of the cyanobacterial Ghis located in the

be applied to the Baltic AVHRR data (Kahru et al., 1993) non-fluorescing photosystem | (Seppélé et al., 2007 and ref-
but it detects only the surface scum that can disappear andrences therein). It was also confirmed in this work thatChl
reappear within a day depending on the wind speed. Multi-florescence was a worse predictor for detecting cyanobac-
and hyper-spectral algorithms are not applicable to old senteria accumulations than either phycocyanin fluorescence or
sors like AVHRR with only one band in the visible part of turbidity (Fig. 9). The Algaline program also collects a small
the spectrum. In order to create a series as long as possibleumber of discrete water samples that are used to measure
using different kinds of satellite sensors including those withChl a from extracts using standard methods. The extracted
low signal-to-noise ratio, we opted to use simple, generic al-Chl a is much better correlated with cyanobacteria abun-
gorithms that are sensitive to brightness in the red part of thelance (Seppala et al., 2007) than @liluorescence. Prelim-
spectrum. inary comparison between Chlvalues extracted from dis-

It is technically challenging to create a consistent time se-crete water samples provided by S. Kaitala (Finnish Environ-
ries that combines data from multiple satellite sensors over anent Institute, SYKE) and FCA along the ship tracks where
long time period. We have here provided methods for linking samples were collected showed quite similar interannual pat-
estimates of FCA from the old AVHRR and CZCS sensorsterns. The mean chlorophyllconcentration of samples col-
with those from the new ocean color sensors, and createtbcted during July—August in the Eastern Gotland Basin had
a 35-year long time series of the frequency of cyanobac-a coherent pattern with FCARE = 0.48, Fig. 15) but much
teria accumulations in the Baltic Sea. While our satellite lower variability (mean=3.8 mgn13, coefficient of varia-
data are limited to cloud-free periods and detect the prestion=0.22). The corresponding time series of FCA had a
ence of cyanobacteria only by their surface signature, thecoefficient of variation that was 4-5 times higher (1.03 for
relative temporal consistency of the accumulations and thel995-2012 and 1.34 for 1979-2013). This difference in vari-
large number of satellite measurements (Table 2) gives usbility was expected as Clal integrates all phytoplankton
confidence in the interannual time series. It is difficult to whereas FCA is a much more sensitive parameter as the de-
compare our interannual time series with the results fromtection of surface accumulations requires very high concen-
the traditional monitoring programs which typically sample trations of cyanobacteria (primariNodularia) near the sur-

a few fixed stations once per month. A single monthly sam-face. An analysis of the environmental conditions explaining
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Figure 13. Maps of the mean July—August FCA in the Baltic Sea, 1979-2013. Gray-scale from light to dark corresponds to increasing FCA.
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A B — The fraction of cyanobacterial accumulations (FCA)
for the Baltic Sea during the July—August period var-
% 5% ied between 0 and about 25 %. Estimates of FCA us-
: ing different ocean color sensors were similar with the
median absolute differences about 0.5% for MODIS-
Aqua, MODIS-Terra and VIIRS and about 1 % for Sea-
“_. WIFS. The fraction of cyanobacteria accumulations es-
1 timates using AVHRR were transformed to correspond
to the estimates by the ocean color sensors.

0.6

| o Q . .
0ol € or1  coeor2 i Re — No surface accumulations were observed in the Both-
02 | , nian Bay.

°1 B et i u Y L — Surface accumulations were significantly more com-
0.2 B . mon in the second half of the observation period, but the
04 increase was not monotonic, and interannual variability
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was large.

Figure 14. Dominant distribution patterns, i.e., empirical orthogo- — The perigd of qunopacterial accumulations occurred
nal functions EOF 1A) and EOF 2B) of the annual July—August progressively earlier in the summer, by about 0.6 days
FCA in the Baltic Sea for 1979-2013 and their temporal loadings per year, or 20 days over 35 years.
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